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CHAPTER 1

An overview of rough paths theory

Let us consider a differential equation that writes

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s),

where the Vi’s are vector fields on Rn and where the driving signal x(t) = (x1(t), · · · , xd(t))
is a continuous bounded variation path. If the vector fields are Lipschitz continuous then,
for any fixed initial condition, there is a unique solution y(t) to the equation. We can
see this solution y as a function of the driving signal x. It is an important question to
understand for which topology, this function is continuous.

A simple example shows that the topology of uniform convergence is not the correct
one here. Indeed, let us consider the differential equation

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = −
∫ t

0

y2(s)dx1(s) +

∫ t

0

y1(s)dx2(s)

where

x1(t) =
1

n
cos(n2t), x2(t) =

1

n
sin(n2t).

A straightforward computation shows that y3(t) = t. When n → ∞, (x1, x2) converges
uniformly to 0 whereas, of course, (y1, y2, y3) does not converge to 0. In this framework ,
a correct topology is given by the topology of convergence in 1-variation on compact sets.
To fix the ideas, let us work on the interval [0, 1]. The distance in 1-variation between
two continuous bounded variation paths x, x̃ : [0, 1]→ Rd is given by

δ1(x, x̃) = ‖x(0)− x̃(0)‖+ sup
π

n−1∑
k=0

‖(x(ti+1)− x̃(ti+1))− (x(ti)− x̃(ti))‖,

where the supremum is taken over all the subdivisions

π = {0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

It is then a fact that is going to be proved in this class that if the Vi’s are bounded and
if xn : [0, 1]→ Rd is a sequence of bounded variation paths that converges in 1-variation
to a continuous path x with bounded variation, then the solutions of the differential
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6 1. AN OVERVIEW OF ROUGH PATHS THEORY

equations

yn(t) = y0 +
d∑
i=1

∫ t

0

Vi(y
n(s))dxi,n(s),

converge in 1-variation to the solution of

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s).

This type of continuity result suggests to use a topology in p-variation, p ≥ 1, to try to
extend the map x→ y to a larger class of driving signals x. More precisely, for p ≥ 1, let
us denote by Ωp(Rd) the closure of the set of continuous with bounded variation paths
x : [0, 1]→ Rd with respect to the distance in p-variation which is given by

δp(x, x̃) =

(
‖x(0)− x̃(0)‖p + sup

π

n−1∑
k=0

‖(x(ti+1)− x̃(ti+1))− (x(ti)− x̃(ti))‖p
)1/p

.

We will then prove the following result:

Proposition 0.1. Let p > 2. If xn : [0, 1]→ Rd is a sequence of bounded variation paths
that converges in p-variation to a path x ∈ Ωp(Rd), then the solutions of the differential
equations

yn(t) = y0 +
d∑
i=1

∫ t

0

Vi(y
n(s))dxi,n(s),

converge in p-variation to some y ∈ Ωp(Rd). Moreover y is the solution of the differential
equation

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s),

where the integrals are understood in the sense of Young’s integration.

The value p = 2 is really a treshold: The result is simply wrong for p = 2. The
main idea of the rough paths theory is to introduce a much stronger topology than the
convergence in p-variation. This topology, that we now explain, is related to the continuity
of lifts of paths in free nilpotent Lie groups.

Let GN(Rd) be the free N -step nilpotent Lie group with d generators X1, · · · , Xd. If
x : [0, 1]→ Rd is continuous with bounded variation, the solution x∗ of the equation

x∗(t) =
d∑
i=1

∫ t

0

Xi(x
∗(s))dxi(s),

is called the lift of x in GN(Rd). For p ≥ 1, let us denote ΩpGN(Rd) the closure of the
set of lifted paths x∗ : [0, 1] → GN(Rd) with respect to the distance in p-variation which
is given by

δNp (x∗, y∗) = sup
π

(
n−1∑
i=1

dN

(
y∗ti(x

∗
ti

)−1, y∗ti+1
(x∗ti+1

)−1
)p) 1

p

,
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where dN denotes the Carnot-Carathéodory distance on the group GN(Rd). This is a
distance that will be explained in details later. Its main property is that it is homogeneous
with respect to the natural dilation of GN(Rd).

Consider now the map I which associates with a continuous with bounded variation
path x : [0, 1] → Rd the continuous path with bounded variation y : [0, 1] → Rd that
solves the ordinary differential equation

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s).

It is clear that there exists a unique map I∗ from the set of continuous with bounded
variation lifted paths [0, 1]→ GN(Rd) onto the set of continuous with bounded variation
lifted paths [0, 1]→ GN(Rn) which makes the following diagram commutative

I∗
x∗ −→ y∗

↑ ↑
x −→ y
I

.

The fundamental theorem of Lyons is the following:

Theorem 0.2. If N ≥ [p], then in the topology of δNp -variation, there exists a continuous

extension of I∗ from ΩpGN(Rd) into ΩpGN(Rn).

In particular, we can now give a sense to differential equations driven by some con-
tinuous paths with finite p-variation, for any p ≥ 1. Indeed, let x : [0, 1] → Rd which is
continuous with a fnite p-variation and assume that there exists x∗ ∈ ΩpGN(Rd) whose
projection onto Rd is x. The projection onto Rd of I∗(x∗) is then understood as being a
solution of

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s).

An important example of application is given by the case where the driving signal is a
Brownian motion (B(t))t≥0. Brownian motion has a p-finite variation for any p > 2 and,
as we will see, admits a canonical lift in ΩpG2(Rd). As a conclusion, we can consider in
the rough paths sense, solutions to the equation

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dBi(s).

It turns out that this notion of solution is exactly equivalent to solutions that are ob-
tained by using the Stratonovitch integration theory. Therefore, the theory of stochastic
differential equations appears as a very special case of the rough paths theory.





CHAPTER 2

Ordinary differential equations

1. Continuous paths with bounded variation

The first few lectures are essentially reminders of undegraduate real analysis materials.
We will cover some aspects of the theory of differential equations driven by continuous
paths with bounded variation. The point is to fix some notations that will be used
throughout the course and to stress the importance of the topology of convergence in
1-variation if we are interested in stability results for solutions with respect to the driving
signal.

If s ≤ t, we will denote by ∆[s, t], the set of subdivisions of the interval [s, t], that is
Π ∈ ∆[s, t] can be written

Π = {s = t0 < t1 < · · · < tn = t} .

Definition 1.1. A continuous path x : [s, t]→ Rd is said to have a bounded variation on
[s, t], if the 1-variation of x on [s, t], which is defined as

‖x‖1−var;[s,t] := sup
Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖,

is finite. The space of continuous bounded variation paths x : [s, t]→ Rd, will be denoted
by C1−var([s, t],Rd).

‖ · ‖1−var;[s,t] is not a norm, because constant functions have a zero 1-variation, but it
is oviously a semi-norm. If x is continuously differentiable on [s, t], it is easily seen that

‖x‖1−var,[s,t] =

∫ t

s

‖x′(s)‖ds.

Proposition 1.2. Let x ∈ C1−var([0, T ],Rd). The function (s, t) → ‖x‖1−var,[s,t] is addi-
tive, i.e for 0 ≤ s ≤ t ≤ u ≤ T ,

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] = ‖x‖1−var,[s,u],

and controls x in the sense that for 0 ≤ s ≤ t ≤ T ,

‖x(s)− x(t)‖ ≤ ‖x‖1−var,[s,t].

The function s→ ‖x‖1−var,[0,s] is moreover continuous and non decreasing.

9



10 2. ORDINARY DIFFERENTIAL EQUATIONS

Proof. If Π1 ∈ ∆[s, t] and Π2 ∈ ∆[t, u], then Π1 ∪ Π2 ∈ ∆[s, u]. As a consequence,
we obtain

sup
Π1∈∆[s,t]

n−1∑
k=0

‖x(tk+1)−x(tk)‖+ sup
Π2∈∆[t,u]

n−1∑
k=0

‖x(tk+1)−x(tk)‖ ≤ sup
Π∈∆[s,u]

n−1∑
k=0

‖x(tk+1)−x(tk)‖,

thus

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] ≤ ‖x‖1−var,[s,u].

Let now Π ∈ ∆[s, u]:

Π = {s = t0 < t1 < · · · < tn = t} .
Let k = max{j, tj ≤ t}. By the triangle inequality, we have

n−1∑
j=0

‖x(tj+1)− x(tj)‖ ≤
k−1∑
j=0

‖x(tj+1)− x(tj)‖+
n−1∑
j=k

‖x(tj+1)− x(tj)‖

≤ ‖x‖1−var,[s,t] + ‖x‖1−var,[t,u].

Taking the sup of Π ∈ ∆[s, u] gives

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] ≥ ‖x‖1−var,[s,u],

which completes the proof. The proof of the continuity and monoticity of s→ ‖x‖1−var,[0,s]
is let to the reader. �

This control of the path by the 1-variation norm is an illustration of the notion of
controlled path which is very useful in rough paths theory.

Definition 1.3. A map ω : {0 ≤ s ≤ t ≤ T} → [0,∞) is called superadditive if for all
s ≤ t ≤ u,

ω(s, t) + ω(t, u) ≤ ω(s, u).

If, in adition, ω is continuous and ω(t, t) = 0, we call ω a control. We say that a path
x : [0, T ]→ R is controlled by a control ω, if there exists a constant C > 0, such that for
every 0 ≤ s ≤ t ≤ T ,

‖x(t)− x(s)‖ ≤ Cω(s, t).

Obviously, Lipschitz functions have a bounded variation. The converse is of course
not true: t →

√
t has a bounded variation on [0, 1] but is not Lipschitz. However, any

continuous path with bounded variation is the reparametrization of a Lipschitz path in
the following sense.

Proposition 1.4. Let x ∈ C1−var([0, T ],Rd). There exist a Lipschitz function y : [0, 1]→
Rd, and a continuous and non-decreasing function φ : [0, T ]→ [0, 1] such that x = y ◦ φ.

Proof. We assume ‖x‖1−var,[0,T ] 6= 0 and consider

φ(t) =
‖x‖1−var,[0,t]

‖x‖1−var,[0,T ]

.
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It is continuous and non decreasing. There exists a function y such that x = y ◦φ because
φ(t1) = φ(t2) implies x(t1) = x(t2). We have then, for s ≤ t,

‖y(φ(t))− y(φ(s))‖ = ‖x(t)− x(s)‖ ≤ ‖x‖1−var,[s,t] = ‖x‖1−var,[0,T ](φ(t)− φ(s)).

�

The next result shows that the set of continuous paths with bounded variation is a
Banach space.

Theorem 1.5. The space C1−var([0, T ],Rd) endowed with the norm ‖x(0)‖+‖x‖1−var,[0,T ]

is a Banach space.

Proof. Let xn ∈ C1−var([0, T ],Rd) be a Cauchy sequence. It is clear that

‖xn − xm‖∞ ≤ ‖xn(0)− xm(0)‖+ ‖xn − xm‖1−var,[0,T ].

Thus, xn converges uniformly to a continuous path x : [0, T ]→ R. We need to prove that
x has a bounded variation. Let

Π = {0 = t0 < t1 < · · · < tn = T}
be a a subdivision of [0, T ]. There is m ≥ 0, such that ‖x− xm‖∞ ≤ 1

2n
, thus

n−1∑
k=0

‖x(tk+1)− x(tk)‖ ≤
n−1∑
k=0

‖x(tk+1)− xm(tk)‖+
n−1∑
k=0

‖xm(tk)− x(tk)‖+ ‖xm‖1−var,[0,T ]

≤ 1 + sup
n
‖xn‖1−var,[0,T ].

Thus, we have
‖x‖1−var,[0,T ] ≤ 1 + sup

n
‖xn‖1−var,[0,T ] <∞.

�

For approximations purposes, it is important to observe that the set of smooth paths is
not dense in C1−var([0, T ],Rd) for the 1-variation convergence topology. The closure of the
set of smooth paths in the 1-variation norm, which shall be denoted by C0,1−var([0, T ],Rd)
is the set of absolutely continuous paths.

Proposition 1.6. Let x ∈ C1−var([0, T ],Rd). Then, x ∈ C0,1−var([0, T ],Rd) if and only
if there exists y ∈ L1([0, T ]) such that,

x(t) = x(0) +

∫ t

0

y(s)ds.

Proof. First let us assume that

x(t) = x(0) +

∫ t

0

y(s)ds,

for some y ∈ L1([0, T ]). Since smooth paths are dense in L1([0, T ]), we can find a sequence
yn in L1([0, T ]) such that ‖y − yn‖1 → 0. Define then,

xn(t) = x(0) +

∫ t

0

yn(s)ds.
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We have
‖x− xn‖1−var,[0,T ] = ‖y − yn‖1.

This implies that x ∈ C0,1−var([0, T ],Rd). Conversely, if x ∈ C0,1−var([0, T ],Rd), there
exists a sequence of smooth paths xn that converges in the 1-variation topology to x.
Each xn can be written as,

xn(t) = xn(0) +

∫ t

0

yn(s)ds.

We still have
‖xm − xn‖1−var,[0,T ] = ‖ym − yn‖1,

so that yn converges to some y in L1. It is then clear that

x(t) = x(0) +

∫ t

0

y(s)ds,

�

Exercise 1.7. Let x ∈ C1−var([0, T ],Rd). Show that x is the limit in 1-variation of
piecewise linear interpolations if and only if x ∈ C0,1−var([0, T ],Rd).

2. Riemann-Stieltjes integrals and Gronwall’s lemma

Let y : [0, T ] → Re×d be a piecewise continuous path and x ∈∈ C1−var([0, T ],Rd). It
is well-known that we can integrate y against x by using the Riemann-Stieltjes integral
which is a natural extension of the Riemann integral. The idea is to use the Riemann
sums

n−1∑
k=0

y(tk)(x(tk+1)− x(tk)),

where Π = {0 = t0 < t1 < · · · < tn = T}. It is easy to prove that, when the mesh of the
subdivision Π goes to 0, the Riemann sums converge to a limit which is independent from

the sequence of subdivisions that was chosen. The limit is then denoted
∫ T

0
y(t)dx(t) and

called the Riemann-Stieltjes integral of y against x. Since x has a bounded variation, it
is easy to see that, more generally,

n−1∑
k=0

y(ξk)(x(tk+1)− x(tk)),

with tk ≤ ξk ≤ tk+1 would also converge to
∫ T

0
y(t)dx(t). If

x(t) = x(0) +

∫ t

0

g(s)ds

is an absolutely continuous path, then it is not difficult to prove that we have∫ T

0

y(t)dx(t) =

∫ T

0

y(t)g(t)dt,

where the integral on the right hand side is understood in Riemann’s sense.
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We have ∥∥∥∥∥
n−1∑
k=0

y(tk)(x(tk+1)− x(tk))

∥∥∥∥∥ ≤
n−1∑
k=0

‖y(tk)‖‖(x(tk+1)− x(tk))‖

≤
n−1∑
k=0

‖y(tk)‖‖(x(tk+1)− x(tk))‖

≤
n−1∑
k=0

‖y(tk)‖‖x‖1−var,[tk,tk+1].

Thus, by taking the limit when the mesh of the subdivision goes to 0, we obtain the
estimate ∥∥∥∥∫ T

0

y(t)dx(t)

∥∥∥∥ ≤ ∫ T

0

‖y(t)‖‖dx(t)‖ ≤ ‖y‖∞,[0,T ]‖x‖1−var,[0,T ],

where
∫ T

0
‖y(t)‖‖dx(t)‖ is the notation for the Riemann-Stieltjes integral of ‖y‖ against

the bounded variation path l(t) = ‖x‖1−var,[0,t]. We can also estimate the Riemann-
Stieltjes integral in the 1-variation distance. We collect the following estimate for later
use

Proposition 2.1. Let y, y′ : [0, T ] → Re×d be a piecewise continuous path and x, x′ ∈
C1−var([0, T ],Rd). We have∥∥∥∥∫ ·

0

y′(t)dx′(t)−
∫ ·

0

y(t)dx(t)

∥∥∥∥
1−var,[0,T ]

≤ ‖x‖1−var,[0,T ]‖y−y′‖∞,[0,T ]+‖y′‖∞,[0,T ]‖x−x′‖1−var,[0,T ].

The Riemann-Stieltjes satisfies the usual rules of calculus, for instance the integration
by parts formula takes the following form

Proposition 2.2. Let y ∈ C1−var([0, T ],Re×d) and x ∈ C1−var([0, T ],Rd).∫ T

0

y(t)dx(t) +

∫ T

0

dy(t)x(t) = y(T )x(T )− y(0)x(0).

We also have the following change of variable formula:

Proposition 2.3. Let x ∈ C1−var([0, T ],Rd) and let Φ : Rd → Re be a C1 map. We have

Φ(x(T )) = Φ(x(0)) +

∫ T

0

Φ′(x(t))dx(t).

Proof. From the mean value theorem

Φ(x(T ))− Φ(x(0)) =
n−1∑
k=0

(Φ(x(tk+1))− Φ(x(tk))) =
n−1∑
k=0

Φ′(xξk)(x(tk+1)− x(tk)),

with tk ≤ ξk ≤ tk+1. The result is then obtained by taking the limit when the mesh of
the subdivision goes to 0. �

We finally state a classical analysis lemma, Gronwall’s lemma, which provides a won-
derful tool to estimate solutions of differential equations.
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Proposition 2.4. Let x ∈ C1−var([0, T ],Rd) and let Φ : [0, T ] → [0,∞) be a bounded
measurable function. If,

Φ(t) ≤ A+B

∫ t

0

Φ(s)‖dx(s)‖, 0 ≤ t ≤ T,

for some A,B ≥ 0, then

Φ(t) ≤ A exp(B‖x‖1−var,[0,t]) 0 ≤ t ≤ T.

Proof. Iterating the inequality

Φ(t) ≤ A+B

∫ t

0

Φ(s)‖dx(s)‖

N times, we get

Φ(t) ≤ A+
n∑
k=1

ABk

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

‖dx(tk)‖ · · · ‖dx(t1)‖+Rn(t),

where Rn(t) is a remainder term that goes to 0 when n→∞. Observing that∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

‖dx(tk)‖ · · · ‖dx(t1)‖ =
‖x‖k1−var,[0,t]

k!

and sending n to ∞ finishes the proof. �

3. Differential equations driven by bounded variation paths

We now turn to the basic existence and uniqueness results concerning differential
equations driven by bounded variation paths.

Theorem 3.1. Let x ∈ C1−var([0, T ],Rd) and let V : Rd → Re be a Lipschitz continuous
map, that is there exists a constant K > 0 such that for every x, y ∈ Rd,

‖V (x)− V (y)‖ ≤ K‖x− y‖.
For every y0 ∈ Re, there is a unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

Moreover y ∈ C1−var([0, T ],Re).

Proof. The proof is a classical application of the fixed point theorem. Let 0 < τ ≤ T
and consider the map Φ going from the space of continuous functions [0, τ ] → Re into
itself, which is defined by

Φ(y)t = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ τ.

By using estimates on Riemann-Stieltjes integrals, we deduce that

‖Φ(y1)− Φ(y2)‖∞,[0,τ ] ≤ ‖V (y1)− V (y2)‖∞,[0,τ ]‖x‖1−var,[0,τ ]

≤ K‖y1 − y2‖∞,[0,τ ]‖x‖1−var,[0,τ ]
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If τ is small enough, then K‖x‖1−var,[0,τ ] < 1, which means that Φ is a contraction that
admits a unique fixed point y. This y is the unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ τ.

By considering then a subdivision

{τ = τ1 < τ2 < · · · < τn = T}
such that K‖x‖1−var,[τk,τk+1] < 1, we obtain a unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

�

The solution of a differential equation is a continuous function of the initial condition,
more precisely we have the following estimate:

Proposition 3.2. Let x ∈ C1−var([0, T ],Rd) and let V : Rd → Re be a Lipschitz continu-
ous map such that for every x, y ∈ Rd,

‖V (x)− V (y)‖ ≤ K‖x− y‖.
If y1 and y2 are the solutions of the differential equations:

y1(t) = y1(0) +

∫ t

0

V (y1(s))dx(s), 0 ≤ t ≤ T,

and

y2(t) = y2(0) +

∫ t

0

V (y2(s))dx(s), 0 ≤ t ≤ T,

then the following estimate holds:

‖y1 − y2‖∞,[0,T ] ≤ ‖y1(0)− y2(0)‖ exp
(
K‖x‖1−var,[0,T ]

)
.

Proof. We have

‖y1 − y2‖∞,[0,t] ≤ ‖y1(0)− y2(0)‖+K

∫ t

0

‖y1 − y2‖∞,[0,s]‖dx(s)‖,

and conclude by Gronwall’s lemma. �

This continuity can be understood in terms of flows. Let x ∈ C1−var([0, T ],Rd) and
let V : Rd → Re be a Lipschitz map. Denote by π(t, y0), 0 ≤ t ≤ T , y0 ∈ Re, the unique
solution of the equation

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

The previous proposition shows that for a fixed 0 ≤ t ≤ T , the map y0 → π(t, y0) is
Lipschitz continuous. The set {π(t, ·), 0 ≤ t ≤ T} is called the flow of the equation.
Under more regularity assumptions on V , the y0 → π(t, y0) is even C1 and the Jacobian
map solves a linear equation.
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Proposition 3.3. Let x ∈ C1−var([0, T ],Rd) and let V : Rd → Re be a C1 Lipschitz
continuous map. Let π(t, y0) be the flow of the equation

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

Then for every 0 ≤ t ≤ T , the map y0 → π(t, y0) is C1 and the Jacobian Jt = ∂π(t,y0)
∂y0

is

the unique solution of the matrix linear equation

Jt = Id+

∫ t

0

DV (π(s, y0))Jsdx(s).

We finally turn to the important estimate showing that solutions of differential equa-
tions are continuous with respect to the driving path in the 1-variation topology

Theorem 3.4. Let x1, x2 ∈ C1−var([0, T ],Rd) and let V : Rd → Re be a Lipschitz and
bounded continuous map such that for every x, y ∈ Rd,

‖V (x)− V (y)‖ ≤ K‖x− y‖.

If y1 and y2 are the solutions of the differential equations:

y1(t) = y(0) +

∫ t

0

V (y1(s))dx1(s), 0 ≤ t ≤ T,

and

y2(t) = y(0) +

∫ t

0

V (y2(s))dx2(s), 0 ≤ t ≤ T,

then the following estimate holds:

‖y1 − y2‖1−var,[0,T ] ≤ ‖V ‖∞
(
1 +K‖x‖1−var,[0,T ] exp

(
K‖x‖1−var,[0,T ]

))
‖x1 − x2‖1−var,[0,T ].

Proof. We first give an estimate in the supremum topology. It is easily seen that
the assumptions imply

‖y1 − y2‖∞,[0,t] ≤ K

∫ t

0

‖y1 − y2‖∞,[0,s]‖dx1(s)‖+ ‖V ‖∞‖x1 − x2‖1−var,[0,T ].

From Gronwall’s lemma, we deduce that

‖y1 − y2‖∞,[0,T ] ≤ ‖V ‖∞ exp
(
K‖x‖1−var,[0,T ]

)
‖x1 − x2‖1−var,[0,T ].

Now, we also have for any 0 ≤ s ≤ t ≤ T ,

‖y1(t)−y2(t)−(y1(s)−y2(s))‖ ≤ K‖y1−y2‖∞,[0,T ]‖x1‖1−var,[s,t] +‖V ‖∞‖x1−x2‖1−var,[s,t].

This implies,

‖y1 − y2‖1−var,[0,T ] ≤ K‖y1 − y2‖∞,[0,T ]‖x1‖1−var,[0,T ] + ‖V ‖∞‖x1 − x2‖1−var,[0,T ]

and yields the conclusion. �
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4. Exponential of vector fields and solutions of differential equations

Let x ∈ C1−var([0, T ],Rd) and let V : Re → Re×d be a Lipschitz continuous map. In
order to analyse the solution of the differential equation,

y(t) = y0 +

∫ t

0

V (y(s))dx(s),

and make the geometry enter into the scene, it is convenient to see V as a collection of
vector fields V = (V1, · · · , Vd), where the Vi’s are the columns of the matrix V . The
differential equation then of course writes

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s),

Generally speaking, a vector field V on Re is a map

V : Re → Re

x → (v1(x), ..., vn(x)).

A vector field V can be seen as a differential operator acting on differentiable functions
f : Re → R as follows:

V f(x) = 〈V (x),∇f(x)〉 =
n∑
i=1

vi(x)
∂f

∂xi
.

We note that V is a derivation, that is for f, g ∈ C1(Re,R),

V (fg) = (V f)g + f(V g).

For this reason we often use the differential notation for vector fields and write:

V =
d∑
i=1

vi(x)
∂

∂xi
.

Using this action of vector fields on functions, the change of variable formula for solutions
of differential equations takes a particularly concise form:

Proposition 4.1. Let y be a solution of a differential equation that writes

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s),

then for any C1 function f : Re → R,

f(y(t)) = f(y0) +
d∑
i=1

∫ t

0

Vif(y(s))dxi(s),

Let V be a Lipschitz vector field on Re. For any y0 ∈ Re, the differential equation

y(t) = y0 +

∫ t

0

V (y(s))ds
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has a unique solution y : R→ Re. By time homogeneity of the equation, the flow of this
equation satisfies

π(t1, π(t2, y0)) = π(t1 + t2, y0).

and therefore {π(t, ·), t ∈ R} is a one parameter group of diffeomorphisms Re → Re. This
group is generated by V in the sense that for every y0 ∈ Rn,

lim
t→0

π(t, y0)− y0

t
= V (y0).

For these reasons, we write π(t, y0) = etV (y0).

Let us now assume that V is a C1 Lipschitz vector field on Re. If φ : Re → Re is a
diffeomorphism, the pull-back φ∗V of the vector field V by the map φ is the vector field
defined by the chain rule,

φ∗V (x) = (dφ−1)φ(x) (V (φ(x))) , x ∈ O′.
In particular, if V ′ is another C1 Lipschitz vector field on Re, then for every t ∈ R, we
have a vector field (etV )∗V ′. The Lie bracket [V, V ′] between V and V ′ is then defined as

[V, V ′] =

(
d

dt

)
t=0

(etV )∗V ′.

It is computed that

[V, V ′](x) =
n∑
i=1

(
n∑
j=1

vj(x)
∂v′i
∂xj

(x)− v′j(x)
∂vi
∂xj

(x)

)
∂

∂xi
.

Observe that the Lie bracket obviously satisfies [V, V ′] = −[V ′, V ] and the so-called Jacobi
identity that is:

[V, [V ′, V ′′]] + [V ′, [V ′′, V ]] + [V ′′, [V, V ′]] = 0.

What the Lie bracket [V, V ′] really quantifies is the lack of commutativity of the respective
flows generated by V and V ′.

Lemma 4.2. Let V, V ′ be two C1 Lipschitz vector fields on Re. Then, [V, V ′] = 0 if and
only if for every s, t ∈ R,

esV etV
′
= esV+tV ′ = etV

′
esV .

Proof. This is a classical result in differential geometry, so we only give one part the
proof. From the very definition of the Lie bracket and the multiplicativity of the flow,
we see that [V, V ′] = 0 if and only if for every s ∈ R, (esV )∗V ′ = V ′. Now, suppose that
[V, V ′] = 0. Let y be the solution of the equation

y(t) = y0 +

∫ t

0

V ′(y(s))ds.

Since (esV )∗V ′ = V ′, we obtain that esV (y(t)) is also a solution of the equation. By
uniqueness of solutions, we obtain that

esV (y(t)) = etV
′
(esV (y0)).
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As a conclusion,
esV etV

′
= etV

′
esV .

�

If we consider a differential equation

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s),

as we will see it throughout this class, the Lie brackets [Vi, Vj] play an important role in
understanding the geometry of the set of solutions. The easiest result in that direction is
the following:

Theorem 4.3. Let x ∈ C1−var([0, T ],Rd) and let V1, · · · , Vd be C1 Lipschitz vector fields
on Re. Assume that for every 1 ≤ i, j ≤ d, [Vi, Vj] = 0, then the solution of the differential
equation

y(t) = y0 +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T,

can be represented as

y(t) = exp

(
d∑
i=1

xi(t)Vi

)
(y0).

Proof. Let

F (x1, · · · , xn) = exp

(
d∑
i=1

xiVi

)
(y0).

Since the flows generated by the Vi’s are commuting, we get that

∂F

∂xi
(x) = Vi(F (x)).

The change of variable formula for bounded variation paths implies then that F (x1(t), · · · , xn(t))
is a solution and we conclude by uniqueness. �





CHAPTER 3

Young’s integrals

1. p-variation paths

Our next goal in this course is to define an integral that can be used to integrate
rougher paths than bounded variation. As we are going to see, Young’s integration theory
allows to define

∫
ydx as soon as y has finite q-variation and x and has a finite p-variation

with 1/p + 1/q > 1. This integral is simply is a limit of Riemann sums as for the
Riemann-Stiletjes integral. In this lecture we present some basic properties of the space
of continuous paths with a finite p-variation. We present these results for Rd valued paths
but most of the results extend without difficulties to paths valued in metric spaces (see
chapter 5 in the book by Friz-Victoir).

Definition 1.1. A path x : [s, t] → Rd is said to be of finite p-variation, p > 0 the
p-variation of x on [s, t], which is defined as

‖x‖p−var;[s,t] :=

(
sup

Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)1/p

,

is finite. The space of continuous paths x : [s, t] → Rd with a finite p-variation will be
denoted by Cp−var([s, t],Rd).

The notion of p-variation is only interesting when p ≥ 1.

Proposition 1.2. Let x : [s, t]→ Rd be a continuous path of finite p-variation with p < 1.
Then, x is constant.

Proof. We have for s ≤ u ≤ t,

‖x(u)− x(s)‖ ≤ (max ‖x(tk+1)− x(tk)‖1−p)

(
n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)

≤ (max ‖x(tk+1)− x(tk)‖1−p)‖x‖pp−var;[s,t].

Since x is continuous, it is also uniformly continuous on [s, t]. By taking a sequence of
subdivisions whose mesh tends to 0, we deduce then that

‖x(u)− x(s)‖ = 0,

so that x is constant. �

The following proposition is immediate:

21
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Proposition 1.3. Let x : [s, t]→ Rd, be a continuous path. If p ≤ p′ then

‖x‖p′−var;[s,t] ≤ ‖x‖p−var;[s,t].
As a consequence

Cp−var([s, t],Rd) ⊂ Cp′−var([s, t],Rd)

We remind that a continuous map ω : {0 ≤ s ≤ t ≤ T} → [0,∞) that vanishes on the
diagonal is called a control f if for all s ≤ t ≤ u,

ω(s, t) + ω(t, u) ≤ ω(s, u).

Proposition 1.4. Let x ∈ Cp−var([0, T ],Rd). Then ω(s, t) = ‖x‖pp−var;[s,t] is a control

such that for every s ≤ t,
‖x(s)− x(t)‖ ≤ ω(s, t)1/p.

Proof. It is immediate that

‖x(s)− x(t)‖ ≤ ω(s, t)1/p,

so we focus on the proof that ω is a control. If Π1 ∈ ∆[s, t] and Π2 ∈ ∆[t, u], then
Π1 ∪ Π2 ∈ ∆[s, u]. As a consequence, we obtain

sup
Π1∈∆[s,t]

n−1∑
k=0

‖x(tk+1)−x(tk)‖p+ sup
Π2∈∆[t,u]

n−1∑
k=0

‖x(tk+1)−x(tk)‖p ≤ sup
Π∈∆[s,u]

n−1∑
k=0

‖x(tk+1)−x(tk)‖p,

thus
‖x‖pp−var,[s,t] + ‖x‖pp−var,[t,u] ≤ ‖x‖

p
p−var,[s,u].

The proof of the continuity is left to the reader (see also Proposition 5.8 in the book by
Friz-Victoir). �

In the following sense, ‖x‖pp−var;[s,t] is the minimal control of a path x.

Proposition 1.5. Let x ∈ Cp−var([0, T ],Rd) and let ω : {0 ≤ s ≤ t ≤ T} → [0,∞) be a
control such that for 0 ≤ s ≤ t ≤ T ,

‖x(s)− x(t)‖ ≤ Cω(s, t)1/p,

then
‖x‖p−var;[s,t] ≤ Cω(s, t).

Proof. We have

‖x‖p−var;[s,t] =

(
sup

Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)1/p

≤

(
sup

Π∈∆[s,t]

n−1∑
k=0

Cpω(tk, tk+1)

)1/p

≤ Cω(s, t).

�
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The next result shows that the set of continuous paths with bounded p-variation is a
Banach space.

Theorem 1.6. Let p ≥ 1. The space Cp−var([0, T ],Rd) endowed with the norm ‖x(0)‖+
‖x‖p−var,[0,T ] is a Banach space.

Proof. The proof is identical to the case p = 1, so we let the careful reader check
the details. �

Again, the set of smooth paths is not dense in Cp−var([0, T ],Rd) for the p-variation
convergence topology. The closure of the set of smooth paths in the p-variation norm
shall be denoted by C0,p−var([0, T ],Rd). We have the following characterization of paths
in C0,p−var([0, T ],Rd).

Proposition 1.7. Let p ≥ 1. x ∈ C0,p−var([0, T ],Rd) if and only if

lim
δ→0

sup
Π∈∆[s,t],|Π|≤δ

n−1∑
k=0

‖x(tk+1)− x(tk)‖p = 0.

Proof. See Theorem 5.31 in the book by Friz-Victoir. �

The following corollary shall often be used in the sequel:

Corollary 1.8. If 1 ≤ p < q, then Cp−var([0, T ],Rd) ⊂ C0,q−var([0, T ],Rd).

Proof. Let Π ∈ ∆[s, t] whose mesh is less than δ > 0. We have

n−1∑
k=0

‖x(tk+1)− x(tk)‖q ≤

(
n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)

max ‖x(tk+1)− x(tk)‖p−q

≤ ‖x‖pp−var;[s,t] max ‖x(tk+1)− x(tk)‖p−q.

As a consequence, we obtain

lim
δ→0

sup
Π∈∆[s,t],|Π|≤δ

n−1∑
k=0

‖x(tk+1)− x(tk)‖q = 0.

�

2. Young’s integrals

In this lecture we define the Young’s integral
∫
ydx when x ∈ Cp−var([0, T ],Rd) and

y ∈ Cq−var([0, T ],Re×d) with 1
p

+ 1
q
> 1. The cornerstone is the following Young-Lóeve

estimate.

Theorem 2.1. Let x ∈ C1−var([0, T ],Rd) and y ∈ C1−var([0, T ],Re×d). Consider now
p, q ≥ 1 with θ = 1

p
+ 1

q
> 1. The following estimate holds: for 0 ≤ s ≤ t ≤ T ,∥∥∥∥∫ t

s

y(u)dx(u)− y(s)(x(t)− x(s))

∥∥∥∥ ≤ 1

1− 21−θ ‖x‖p−var;[s,t]‖y‖q−var;[s,t].
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Proof. For 0 ≤ s ≤ t ≤ T , let us define

Γs,t =

∫ t

s

y(u)dx(u)− y(s)(x(t)− x(s)).

We have for s < t < u,

Γs,u − Γs,t − Γt,u = −y(s)(x(u)− x(s)) + y(s)(x(t)− x(s)) + y(t)(x(u)− x(t))

= (y(s)− y(t))(x(t)− x(u)).

As a consequence, we get

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+ ‖x‖p−var;[t,u]‖y‖q−var;[s,t].

Let now ω(s, t) = ‖x‖1/θ
p−var;[s,t]‖y‖

1/θ
q−var;[s,t]. We claim that ω is a control. The continuity

and the vanishing on the diagonal are obvious to check, so we just need to justify the
superadditivity. Let s < t < u, we have from Hölder’s inequality,

ω(s, t) + ω(t, u) = ‖x‖1/θ
p−var;[s,t]‖y‖

1/θ
q−var;[s,t] + ‖x‖1/θ

p−var;[t,u]‖y‖
1/θ
q−var;[t,u]

≤ (‖x‖pp−var;[s,t] + ‖x‖pp−var;[t,u])
1
pθ (‖y‖qq−var;[s,t] + ‖y‖qq−var;[t,u])

1
qθ

≤ ‖x‖1/θ
p−var;[s,u]‖y‖

1/θ
q−var;[s,u] = ω(s, u).

We have then

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+ ω(s, u)θ.

For ε > 0, consider then the control

ωε(s, t) = ω(s, t) + ε(‖x‖1−var;[s,t] + ‖y‖1−var;[s,t])

Define now

Ψ(r) = sup
s,u,ωε(s,u)≤r

‖Γs,u‖.

If s, u is such that ωε(s, u) ≤ r, we can find a t such that ωε(s, t) ≤ 1
2
ωε(s, u), ωε(t, u) ≤

1
2
ωε(s, u). Indeed, the continuity of ωε forces the existence of a t such that ωε(s, t) =
ωε(t, u). We obtain therefore

‖Γs,u‖ ≤ 2Ψ(r/2) + rθ,

which implies by maximization,

Ψ(r) ≤ 2Ψ(r/2) + rθ.

By iterating n times this inequality, we obtain

Ψ(r) ≤ 2nΨ
( r

2n

)
+

n−1∑
k=0

2k(1−θ)rθ

≤ 2nΨ
( r

2n

)
+

1

1− 21−θ r
θ.
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It is now clear that

‖Γs,t‖ ≤
∥∥∥∥∫ t

s

(y(u)− y(s))dx(u)

∥∥∥∥
≤ ‖x‖1−var;[s,t]‖y − y(s)‖∞;[s,t]

≤ (‖x‖1−var;[s,t] + ‖y‖1−var;[s,t])
2

≤ 1

ε2
ωε(s, t)

2,

so that

lim
n→∞

2nΨ
( r

2n

)
= 0.

We conclude

Ψ(r) ≤ 1

1− 21−θ r
θ

and thus

‖Γs,u‖ ≤
1

1− 21−θωε(s, u)θ.

Sending ε→ 0, finishes the proof. �

It is remarkable that the Young-Lóeve estimate only involves ‖x‖p−var;[s,t] and ‖y‖q−var;[s,t].
As a consequence, we obtain the following result whose proof is let to the reader:

Proposition 2.2. Let x ∈ Cp−var([0, T ],Rd) and y ∈ Cq−var([0, T ],Re×d) with θ = 1
p

+
1
q
> 1. Let us assume that there exists a sequence xn ∈ C1−var([0, T ],Rd) such that

xn → x in Cp−var([0, T ],Rd) and a sequence yn ∈ C1−var([0, T ],Re×d) such that yn → x

in Cq−var([0, T ],Rd), then for every s < t,
∫ t
s
yn(u)dxn(u) converges to a limit that we

call the Young’s integral of y against x on the interval [s, t] and denote
∫ t
s
y(u)dx(u).

The integral
∫ t
s
y(u)dx(u) does not depend of the sequences xn and yn and the following

estimate holds: for 0 ≤ s ≤ t ≤ T ,∥∥∥∥∫ t

s

y(u)dx(u)− y(s)(x(t)− x(s))

∥∥∥∥ ≤ 1

1− 21−θ ‖x‖p−var;[s,t]‖y‖q−var;[s,t].

The closure of C1−var([0, T ],Rd) in Cp−var([0, T ],Rd) is C0,p−var([0, T ],Rd) and we
know that Cp+ε−var([0, T ],Rd) ⊂ C0,p−var([0, T ],Rd). It is therefore obvious to extend
the Young’s integral for every x ∈ Cp−var([0, T ],Rd) and y ∈ Cq−var([0, T ],Re×d) with
θ = 1

p
+ 1

q
> 1 and the Young-Lóeve estimate still holds∥∥∥∥∫ t

s

y(u)dx(u)− y(s)(x(t)− x(s))

∥∥∥∥ ≤ 1

1− 21−θ ‖x‖p−var;[s,t]‖y‖q−var;[s,t].

From this estimate, we easily see that for x ∈ Cp−var([0, T ],Rd) and y ∈ Cp−var([0, T ],Re×d)
with 1

p
+ 1

q
> 1 the sequence of Riemann sums

n−1∑
k=0

y(ti)(xti+1
− xti)



26 3. YOUNG’S INTEGRALS

will converge to
∫ t
s
y(u)dx(u) when the mesh of the subdivision goes to 0. We record for

later use the following estimate on the Young’s integral, which is also an easy consequence
of the Young-Lóeve estimate (see Theorem 6.8 in the book for further details).

Proposition 2.3. Let x ∈ Cp−var([0, T ],Rd) and y ∈ Cq−var([0, T ],Re×d) with 1
p

+ 1
q
> 1.

The integral path t→
∫ t

0
y(u)dx(u) is continuous with a finite p-variation and we have∥∥∥∥∫ ·

0

y(u)dx(u)

∥∥∥∥
p−var,[s,t]

≤ C‖x‖p−var;[s,t]
(
‖y‖q−var;[s,t] + ‖y‖∞;[s,t]

)
≤ 2C‖x‖p−var;[s,t]

(
‖y‖q−var;[s,t] + ‖y(0)‖

)
3. Young’s differential equations

In the previous lecture we defined the Young’s integral
∫
ydx when x ∈ Cp−var([0, T ],Rd)

and y ∈ Cq−var([0, T ],Re×d) with 1
p

+ 1
q
> 1. The integral path

∫ t
0
ydx has then a bounded

p-variation. Now, if V : Re → Rd×d is a Lipschitz map, then the integral,
∫
V (x)dx is

only defined when 1
p

+ 1
p
> 1, that is for p < 2. With this in mind, it is apparent that

Young’s integration should be useful to solve differential equations driven by continuous
paths with bounded p-variation for p < 2. If p ≥ 2, then the Young’s integral is of no
help and the rough paths theory later explained is the correct one.

The basic existence and uniqueness result is the following. Throughout this lecture,
we assume that p < 2.

Theorem 3.1. Let x ∈ Cp−var([0, T ],Rd) and let V : Re → Re×d be a Lipschitz continuous
map, that is there exists a constant K > 0 such that for every x, y ∈ Re,

‖V (x)− V (y)‖ ≤ K‖x− y‖.

For every y0 ∈ Re, there is a unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

Moreover y ∈ Cp−var([0, T ],Re).

Proof. The proof is of course based again of the fixed point theorem. Let 0 < τ ≤ T
and consider the map Φ going from the space Cp−var([0, τ ],Re) into itself, which is defined
by

Φ(y)t = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ τ.

By using basic estimates on the Young’s integrals, we deduce that

‖Φ(y1)− Φ(y2)‖p−var,[0,τ ] ≤ C‖x‖p−var,[0,τ ](‖V (y1)− V (y2)‖p−var,[0,τ ] + ‖V (y1)(0)− V (y2)(0)‖)
≤ CK‖x‖p−var,[0,τ ](‖y1 − y2‖p−var,[0,τ ] + ‖y1(0)− y2(0)‖).

If τ is small enough, then CK‖x‖p−var,[0,τ ] < 1, which means that Φ is a contraction of
the Banach space Cp−var([0, τ ],Re) endowed with the norm ‖y‖p−var,[0,τ ] + ‖y(0)‖.
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The fixed point of Φ, let us say y, is the unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ τ.

By considering then a subdivision

{τ = τ1 < τ2 < · · · < τn = T}

such that CK‖x‖p−var,[τk,τk+1] < 1, we obtain a unique solution to the differential equation:

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

�

As for the bounded variation case, the solution of a Young’s differential equation is a
C1 function of the initial condition,

Proposition 3.2. Let x ∈ Cp−var([0, T ],Rd) and let V : Re → Re×d be a C1 Lipschitz
continuous map. Let π(t, y0) be the flow of the equation

y(t) = y0 +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.

Then for every 0 ≤ t ≤ T , the map y0 → π(t, y0) is C1 and the Jacobian Jt = ∂π(t,y0)
∂y0

is

the unique solution of the matrix linear equation

Jt = Id+
d∑
i=1

∫ t

0

DVi(π(s, y0))Jsdx
i(s).

As we already mentioned it before, solutions of Young’s differential equations are
continuous with respect to the driving path in the p-variation topology

Theorem 3.3. Let xn ∈ Cp−var([0, T ],Rd) and let V : Re → Re×d be a Lipschitz and
bounded continuous map such that for every x, y ∈ Rd,

‖V (x)− V (y)‖ ≤ K‖x− y‖.

Let yn be the solution of the differential equation:

yn(t) = y(0) +

∫ t

0

V (yn(s))dxn(s), 0 ≤ t ≤ T.

If xn converges to x in p-variation, then yn converges in p-variation to the solution of the
differential equation:

y(t) = y(0) +

∫ t

0

V (y(s))dx(s), 0 ≤ t ≤ T.
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Proof. Let 0 ≤ s ≤ t ≤ T . We have

‖y − yn‖p−var,[s,t] =

∥∥∥∥∫ ·
0

V (y(u))dx(u)−
∫ ·

0

V (yn(u))dxn(u)

∥∥∥∥
p−var,[s,t]

≤
∥∥∥∥∫ ·

0

(V (y(u))− V (yn(u)))dx(u) +

∫ ·
0

V (yn(u))d(x(u)− xn(u))

∥∥∥∥
p−var,[s,t]

≤
∥∥∥∥∫ ·

0

(V (y(u))− V (yn(u)))dx(u)

∥∥∥∥
p−var,[s,t]

+

∥∥∥∥∫ ·
0

V (yn(u))d(x(u)− xn(u))

∥∥∥∥
p−var,[s,t]

≤ CK‖x‖p−var,[s,t]‖y − yn‖p−var,[s,t] + C‖x− xn‖p−var,[s,t](K‖yn‖p−var,[s,t] + ‖V ‖∞,[0,T ])

Thus, if s, t is such that CK‖x‖p−var,[s,t] < 1, we obtain

‖y − yn‖p−var,[s,t] ≤
C(K‖yn‖p−var,[s,t] + ‖V ‖∞,[0,T ])

1− CK‖x‖p−var,[s,t]
‖x− xn‖p−var,[s,t].

In the very same way, provided CK‖xn‖p−var,[s,t] < 1, we get

‖yn‖p−var,[s,t] ≤
C‖V ‖∞,[0,T ]

1− CK‖xn‖p−var,[s,t]
.

Let us fix 0 < ε < 1 and pick a sequence 0 ≤ τ1 ≤ · · · ≤ τm = T such that
CK‖x‖p−var,[τi,τi+1] + ε < 1. Since ‖xn‖p−var,[τi,τi+1] → ‖x‖p−var,[τi,τi+1], for n ≥ N1 with N1

big enough, we have

CK‖xn‖p−var,[τi,τi+1] +
ε

2
< 1.

We deduce that for n ≥ N1,

‖yn‖p−var,[τi,τi+1] ≤
2

ε
C‖V ‖∞,[0,T ]

and

‖y − yn‖p−var,[τi,τi+1] ≤
C(K 2

ε
C‖V ‖∞,[0,T ] + ‖V ‖∞,[0,T ])

1− CK‖x‖p−var,[τi,τi+1]

‖x− xn‖p−var,[τi,τi+1]

≤ C

ε
‖V ‖∞,[0,T ]

(
2KC

ε
+ 1

)
‖x− xn‖p−var,[τi,τi+1]

≤ C

ε
‖V ‖∞,[0,T ]

(
2KC

ε
+ 1

)
‖x− xn‖p−var,[0,T ].

For n ≥ N2 with N2 ≥ N1 and big enough, we have

‖x− xn‖p−var,[0,T ] ≤
ε3

m
,

which implies

‖y − yn‖p−var,[0,T ] ≤
C

ε
‖V ‖∞,[0,T ]

(
2KC

ε
+ 1

)
ε3.

�



CHAPTER 4

Rough paths

1. The signature of a bounded variation path

In this lecture we introduce the central notion of the signature of a path x ∈ C1−var([0, T ],Rd)
which is a convenient way to encode all the algebraic information on the path x which is
relevant to study differential equations driven by x. The motivation for the definition of
the seignature comes from formal manipulations on Taylor series.

Let us consider a differential equation

y(t) = y(s) +
d∑
i=1

∫ t

s

Vi(y(u))dxi(u),

where the Vi’s are smooth vector fields on Rn.
If f : Rn → R is a C∞ function, by the change of variable formula,

f(y(t)) = f(y(s)) +
d∑
i=1

∫ t

0

Vif(y(u))dxi(u).

Now, a new application of the change of variable formula to Vif(y(s)) leads to

f(y(t)) = f(y(s)) +
d∑
i=1

Vif(y(s))

∫ t

s

dxi(u) +
d∑

i,j=1

∫ t

s

∫ u

0

VjVif(y(v))dxj(v)dxi(u).

We can continue this procedure to get after N steps

f(y(t)) = f(y(s)) +
N∑
k=1

∑
I=(i1,··· ,ik)

(Vi1 · · ·Vikf)(y(s))

∫
∆k[s,t]

dxI +RN(s, t)

for some remainder term RN(s, t), where we used the notations:

(1) ∆k[s, t] = {(t1, · · · , tk) ∈ [s, t]k, s ≤ t1 ≤ t2 · · · ≤ tk ≤ t}
(2) If I = (i1, · · · , ik) ∈ {1, · · · , d}k is a word with length k,∫

∆k[s,t]

dxI =

∫
s≤t1≤t2≤···≤tk≤t

dxi1(t1) · · · dxik(tk).

If we let N → +∞, assuming RN(s, t) → 0 (which is by the way true for t − s small
enough if the Vi’s are analytic), we are led to the formal expansion formula:

f(y(t)) = f(y(0)) +
+∞∑
k=1

∑
I=(i1,··· ,ik)

(Vi1 · · ·Vikf)(y(s))

∫
∆k[s,t]

dxI .

29



30 4. ROUGH PATHS

This shows, at least at the formal level, that all the information given by x on y is
contained in the iterated integrals

∫
∆k[s,t]

dxI .

Let R[[X1, ..., Xd]] be the non commutative algebra over R of the formal series with d
indeterminates, that is the set of series

Y = y0 +
+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik .

Definition 1.1. Let x ∈ C1−var([0, T ],Rd). The signature of x (or Chen’s series) is the
formal series:

S(x)s,t = 1 +
+∞∑
k=1

∑
I∈{1,...,d}k

(∫
∆k[s,t]

dxI
)
Xi1 · · ·Xik , 0 ≤ s ≤ t ≤ T.

As we are going to see in the next few lectures, the signature is a fascinating algebraic
object. At the source of the numerous properties of the signature lie the following so-called
Chen’s relations

Lemma 1.2 (Chen’s relations). Let x ∈ C1−var([0, T ],Rd). For any word (i1, ..., in) ∈
{1, ..., d}n and any 0 ≤ s ≤ t ≤ u ≤ T ,∫

∆n[s,u]

dx(i1,...,in) =
n∑
k=0

∫
∆k[s,t]

dx(i1,...,ik)

∫
∆n−k[t,u]

dx(ik+1,...,in),

where we used the convention that if I is a word with length 0, then
∫

∆0[0,t]
◦dxI = 1.

Proof. It follows readily by induction on n by noticing that∫
∆n[s,u]

dx(i1,...,in) =

∫ u

s

(∫
∆n−1[s,tn]

dx(i1,...,in−1)

)
dxin(tn).

�

To avoid heavy notations, it will be convenient to denote∫
∆k[s,t]

dx⊗k =
∑

I∈{1,...,d}k

(∫
∆k[s,t]

dxI
)
Xi1 · · ·Xik .

This notation actually reflects a natural algebra isomorphism between R[[X1, ..., Xd]] and
1⊕+∞

k=1 (Rd)⊗k. With this notation, observe that the signature writes then

S(x)s,t = 1 +
+∞∑
k=1

∫
∆k[s,t]

dx⊗k,

and that the Chen’s relations become∫
∆n[s,u]

dx⊗n =
n∑
k=0

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).

The Chen’s relations imply the following flow property for the signature:
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Lemma 1.3. Let x ∈ C1−var([0, T ],Rd). For any 0 ≤ s ≤ t ≤ u ≤ T ,

S(x)s,u = S(x)s,tS(x)t,u

Proof. Indeed,

S(x)s,u = 1 +
+∞∑
k=1

∫
∆k[s,u]

dx⊗k

= 1 +
+∞∑
k=1

n∑
j=0

∫
∆j [s,t]

dx⊗j
∫

∆k−j [t,u]

dx⊗(k−j)

= S(x)s,tS(x)t,u.

�

2. Estimating iterated integrals

In the previous lecture we introduced the signature of a bounded variation path x as
the formal series

S(x)s,t = 1 +
+∞∑
k=1

∫
∆k[s,t]

dx⊗k.

If now x ∈ Cp−var([0, T ],Rd), p ≥ 1 the iterated integrals
∫

∆k[s,t]
dx⊗k can only be defined

as Young integrals when p < 2. In this lecture, we are going to define the signature of
some (not all) paths with a finite p variation when p < 2. The construction is due to
Terry Lyons in his seminal paper and this is where the rough paths theory really begins.

For P ∈ R[[X1, ..., Xd]] that can be writen as

P = P0 +
+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik ,

we define

‖P‖ = |P0|+
+∞∑
k=1

∑
I∈{1,...,d}k

|ai1,...,ik | ∈ [0,∞].

It is quite easy to check that for P,Q ∈ R[[X1, ..., Xd]]

‖PQ‖ ≤ ‖P‖‖Q‖.
Let x ∈ C1−var([0, T ],Rd). For p ≥ 1, we denote∥∥∥∥∫ dx⊗k

∥∥∥∥
p−var,[s,t]

=

(
sup

Π∈D[s,t]

n−1∑
k=0

∥∥∥∥∫
∆k[ti,ti+1]

dx⊗k
∥∥∥∥p
)1/p

,

where D[s, t] is the set of subdivisions of the interval [s, t]. Observe that for k ≥ 2, in
general ∫

∆k[s,t]

dx⊗k +

∫
∆k[t,u]

dx⊗k 6=
∫

∆k[s,u]

dx⊗k.
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Actually from the Chen’s relations we have∫
∆n[s,u]

dx⊗n =

∫
∆n[s,t]

dx⊗k +

∫
∆n[t,u]

dx⊗k +
n−1∑
k=1

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).

It follows that
∥∥∫ dx⊗k∥∥

p−var,[s,t] needs not to be the p-variation of t→
∫

∆k[s,t]
dx⊗k. It is

however easy to verify that∥∥∥∥∫
∆k[s,·]

dx⊗k
∥∥∥∥
p−var,[s,t]

≤
∥∥∥∥∫ dx⊗k

∥∥∥∥
p−var,[s,t]

.

The first major result of rough paths theory is the following estimate:

Theorem 2.1. Let p ≥ 1. There exists a constant C ≥ 0, depending only on p, such that
for every x ∈ C1−var([0, T ],Rd) and k ≥ 0,∥∥∥∥∫

∆k[s,t]

dx⊗k
∥∥∥∥ ≤ Ck(

k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.

By
(
k
p

)
!, we of course mean Γ

(
k
p

+ 1
)

. Some remarks are in order before we prove

the result. If p = 1, then the estimate becomes∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ Ck

k!
‖x‖k1−var,[s,t],

which is immediately checked because∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ ∑

I∈{1,...,d}k

∥∥∥∥∫
∆k[s,t]

dxI
∥∥∥∥

≤
∑

I∈{1,...,d}k

∫
s≤t1≤t2≤···≤tk≤t

‖dxi1(t1)‖ · · · ‖dxik(tk)‖

≤ 1

k!
‖x‖k1−var,[s,t].

We can also observe that for k ≤ p, the estimate is easy to obtain because∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ ∥∥∥∥∫ dx⊗k

∥∥∥∥
p
k
−var,[s,t]

.

So, all the work is to prove the estimate when k > p. The proof is split into two lemmas.
The first one is a binomial inequality which is actually quite difficult to prove:

Lemma 2.2. For x, y > 0, n ∈ N, n ≥ 0, and p ≥ 1,
n∑
j=0

xj/p(
j
p

)
!

y(n−j)/p(
n−j
p

)
!
≤ p

(x+ y)n/p(
n
p

)
!

.
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Proof. See Lemma 2.2.2 in the article by Lyons or this proof for the sharp constant.
�

The second one is a lemma that actually already was essentially proved in the Lecture
on Young’s integral, but which was not explicitly stated.

Lemma 2.3. Let Γ : {0 ≤ s ≤ t ≤ T} → RN . Let us assume that:

(1) There exists a control ω̃ such that

lim
r→0

sup
(s,t),ω̃(s,t)≤r

‖Γs,t‖
r

= 0;

(2) There exists a control ω and θ > 1, ξ > 0 such that for 0 ≤ s ≤ t ≤ u ≤ T ,

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+ ξω(s, u)θ.

Then, for all 0 ≤ s < t ≤ T ,

‖Γs,t‖ ≤
ξ

1− 21−θω(s, t)θ.

Proof. See the proof of the Young-Loeve estimate or Lemma 6.2 in the book by
Friz-Victoir. �

We can now turn to the proof of the main result.

Proof. Let us denote

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

p

.

We claim that ω is a control. Indeed for 0 ≤ s ≤ t ≤ u ≤ T , we have from Hölder’s
inequality

ω(s, t) + ω(t, u) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

p

+

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[t,u]

p

≤

 [p]∑
j=1

(∥∥∥∥∫ dx⊗j
∥∥∥∥p/j
p
j
−var,[s,t]

+

∥∥∥∥∫ dx⊗j
∥∥∥∥p/j
p
j
−var,[t,u]

)1/p
p

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,u]

p

= ω(s, u).

It is clear that for some constant β > 0 which is small enough, we have for k ≤ p,∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ 1

β
(
k
p

)
!
ω(s, t)k/p.
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Let us now consider

Γs,t =

∫
∆[p]+1[s,t]

dx⊗([p]+1).

From the Chen’s relations, for 0 ≤ s ≤ t ≤ u ≤ T ,

Γs,u = Γs,t + Γt,u +

[p]∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆[p]+1−j [t,u]

dx⊗([p]+1−j).

Therefore,

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+

[p]∑
j=1

∥∥∥∥∫
∆j [s,t]

dx⊗j
∥∥∥∥∥∥∥∥∫

∆[p]+1−j [t,u]

dx⊗([p]+1−j)
∥∥∥∥

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2

[p]∑
j=1

1(
j
p

)
!
ω(s, t)j/p

1(
[p]+1−j

p

)
!
ω(t, u)([p]+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2

[p]+1∑
j=0

1(
j
p

)
!
ω(s, t)j/p

1(
[p]+1−j

p

)
!
ω(t, u)([p]+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2
p

(ω(s, t) + ω(t, u))([p]+1)/p(
[p]+1
p

)
!

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2
p
ω(s, u)([p]+1)/p(

[p]+1
p

)
!

.

On the other hand, we have

‖Γs,t‖ ≤ A‖x‖[p]+1
1−var,[s,t].

We deduce from the previous lemma that

‖Γs,t‖ ≤
1

β2

p

1− 21−θ
ω(s, t)([p]+1)/p(

[p]+1
p

)
!

,

with θ = [p]+1
p

. The general case k ≥ p is dealt by induction. The details are let to the

reader. �

Let x ∈ C1−var([0, T ],Rd). Since

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

p

is a control, the estimate∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ Ck(

k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.
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easily implies that for k > p,∥∥∥∥∫ dx⊗k
∥∥∥∥

1−var,[s,t]
≤ Ck(

k
p

)
!
ω(s, t)k/p.

We stress that it does not imply a bound on the 1-variation of the path t→
∫

∆k[0,t]
dx⊗k.

What we can get for this path, are bounds in p-variation:

Proposition 2.4. Let p ≥ 1. There exists a constant C ≥ 0, depending only on p, such
that for every x ∈ C1−var([0, T ],Rd) and k ≥ 0,∥∥∥∥∫

∆k[0,·]
dx⊗k

∥∥∥∥
p−var,[s,t]

≤ Ck(
k
p

)
!
ω(s, t)1/pω(0, T )

k−1
p

where

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

p

, 0 ≤ s ≤ t ≤ T.

Proof. This is an easy consequence of the Chen’s relations. Indeed,∥∥∥∥∫
∆k[0,t]

dx⊗k −
∫

∆k[0,s]

dx⊗k
∥∥∥∥ =

∥∥∥∥∥
k∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆j−k[0,s]

dx⊗(k−j)

∥∥∥∥∥
≤

k∑
j=1

∥∥∥∥∫
∆j [s,t]

dx⊗j
∥∥∥∥∥∥∥∥∫

∆j−k[0,s]

dx⊗(k−j)
∥∥∥∥

≤ Ck

k∑
j=1

1(
j
p

)
!
ω(s, t)j/p

1(
k−j
p

)
!
ω(s, t)(k−j)/p

≤ Ckω(s, t)1/p

k∑
j=1

1(
j
p

)
!
ω(0, T )(j−1)/p 1(

k−j
p

)
!
ω(0, T )(k−j)/p

≤ Ckω(s, t)1/pω(0, T )(k−1)/p

k∑
j=1

1(
j
p

)
!

1(
k−j
p

)
!
.

and we conclude with the binomial inequality. �

We are now ready for a second major estimate which is the key to define iterated
integrals of a path with p-bounded variation when p ≥ 2.

Theorem 2.5. Let p ≥ 1, K > 0 and x, y ∈ C1−var([0, T ],Rd) such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ 1,
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and  [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[0,T ]

p

+

 [p]∑
j=1

∥∥∥∥∫ dy⊗j
∥∥∥∥1/j

p
j
−var,[0,T ]

p

≤ K.

Then there exists a constant C ≥ 0 depending only on p and K such that for 0 ≤ s ≤ t ≤ T
and k ≥ 1∥∥∥∥∫

∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k
∥∥∥∥ ≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗k

∥∥∥∥1/j

p
j
−var,[0,T ]

 Ck(
k
p

)
!
ω(s, t)k/p,

∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥+

∥∥∥∥∫
∆k[s,t]

dy⊗k
∥∥∥∥ ≤ Ck(

k
p

)
!
ω(s, t)k/p

where ω is the control

ω(s, t) =

(∑[p]
j=1

∥∥∫ dx⊗j∥∥1/j
p
j
−var,[s,t]

)p
+

(∑[p]
j=1

∥∥∫ dy⊗j∥∥1/j
p
j
−var,[s,t]

)p
(∑[p]

j=1

∥∥∫ dx⊗j∥∥1/j
p
j
−var,[0,T ]

)p
+

(∑[p]
j=1

∥∥∫ dy⊗j∥∥1/j
p
j
−var,[0,T ]

)p

+

∑[p]
j=1

∥∥∫ dx⊗j − ∫ dy⊗j∥∥1/j
p
j
−var,[s,t]∑[p]

j=1

∥∥∫ dx⊗j − ∫ dy⊗j∥∥1/j
p
j
−var,[0,T ]

p

Proof. We prove by induction on k that for some constants C, β,∥∥∥∥∫
∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k
∥∥∥∥ ≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗k

∥∥∥∥1/j

p
j
−var,[0,T ]

 Ck

β
(
k
p

)
!
ω(s, t)k/p,

∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥+

∥∥∥∥∫
∆k[s,t]

dy⊗k
∥∥∥∥ ≤ Ck

β
(
k
p

)
!
ω(s, t)k/p

For k ≤ p, we trivially have∥∥∥∥∫
∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k
∥∥∥∥ ≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗k

∥∥∥∥1/j

p
j
−var,[0,T ]

k

ω(s, t)k/p

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗k

∥∥∥∥1/j

p
j
−var,[0,T ]

ω(s, t)k/p.

and ∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥+

∥∥∥∥∫
∆k[s,t]

dy⊗k
∥∥∥∥ ≤ Kk/pω(s, t)k/p
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Not let us assume that the result is true for 0 ≤ j ≤ k with k > p. Let

Γs,t =

∫
∆k[s,t]

dx⊗(k+1) −
∫

∆k[s,t]

dy⊗(k+1)

From the Chen’s relations, for 0 ≤ s ≤ t ≤ u ≤ T ,

Γs,u = Γs,t+Γt,u+
k∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆k+1−j [t,u]

dx⊗(k+1−j)−
k∑
j=1

∫
∆j [s,t]

dy⊗j
∫

∆k+1−j [t,u]

dy⊗(k+1−j).

Therefore, from the binomial inequality

‖Γs,u‖ ≤‖Γs,t‖+ ‖Γt,u‖+
k∑
j=1

∥∥∥∥∫
∆j [s,t]

dx⊗j −
∫

∆j [s,t]

dy⊗j
∥∥∥∥∥∥∥∥∫

∆k+1−j [t,u]

dx⊗(k+1−j)
∥∥∥∥

+
k∑
j=1

∥∥∥∥∫
∆j [s,t]

dy⊗j
∥∥∥∥∥∥∥∥∫

∆k+1−j [t,u]

dx⊗(k+1−j) −
∫

∆k+1−j [t,u]

dy⊗(k+1−j)
∥∥∥∥

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2
ω̃(0, T )

k∑
j=1

Cj(
j
p

)
!
ω(s, t)j/p

Ck+1−j(
k+1−j
p

)
!
ω(t, u)(k+1−j)/p

+
1

β2
ω̃(0, T )

k∑
j=1

Cj(
j
p

)
!
ω(s, t)j/p

Ck+1−j(
k+1−j
p

)
!
ω(t, u)(k+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
2p

β2
ω̃(0, T )Ck+1ω(s, u)(k+1)/p(

k+1
p

)
!

where

ω̃(0, T ) =

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗k

∥∥∥∥1/j

p
j
−var,[0,T ]

.

We deduce

‖Γs,t‖ ≤
2p

β2(1− 21−θ)
ω̃(0, T )Ck+1ω(s, t)(k+1)/p(

k+1
p

)
!

with θ = k+1
p

. A correct choice of β finishes the induction argument. �

In this lecture, it is now time to harvest the fruits of the of the two previous lectures.
This will allow us to finally define the notion of p-rough path and to construct the signature
of such path.

A first result which is a consequence of the theorem proved in the previous lecture
is the following continuity of the iterated iterated integrals with respect to a convenient
topology. The proof uses very similar arguments to the previous two lectures, so we let it
as an exercise to the student.
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Theorem 2.6. Let p ≥ 1, K > 0 and x, y ∈ C1−var([0, T ],Rd) such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ 1,

and  [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[0,T ]

p

+

 [p]∑
j=1

∥∥∥∥∫ dy⊗j
∥∥∥∥1/j

p
j
−var,[0,T ]

p

≤ K.

Then there exists a constant C ≥ 0 depending only on p and K such that for 0 ≤ s ≤ t ≤ T
and k ≥ 1∥∥∥∥∫

∆k[0,·]
dx⊗k −

∫
∆k[0,·]

dy⊗k
∥∥∥∥
p−var,[0,T ]

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j
−var,[0,T ]

 Ck(
k
p

)
!
,

This continuity result naturally leads to the following definition.

Definition 2.7. Let p ≥ 1 and x ∈ Cp−var([0, T ],Rd). We say that x is a p-rough path if
there exists a sequence xn ∈ C1−var([0, T ],Rd) such that xn → x in p-variation and such
that for every ε > 0, there exists N ≥ 0 such that for m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ ε.

The space of p-rough paths will be denoted Ωp([0, T ],Rd).

From the very definition, Ωp([0, T ],Rd) is the closure of C1−var([0, T ],Rd) inside Cp−var([0, T ],Rd)
for the distance

dΩp([0,T ],Rd)(x, y) =

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j
−var,[0,T ]

.

If x ∈ Ωp([0, T ],Rd) and xn ∈ C1−var([0, T ],Rd) such that xn → x in p-variation and
such that for every ε > 0, there exists N ≥ 0 such that for m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ ε,

then we define
∫

∆k[s,t]
dx⊗k for k ≤ p as the limit of the iterated integrals

∫
∆k[s,t]

dx⊗kn .

However it is important to observe that
∫

∆k[s,t]
dx⊗k may then depend on the choice of

the approximating sequence xn. Once the integrals
∫

∆k[s,t]
dx⊗k are defined for k ≤ p, we

can then use the previous theorem to construct all the iterated integrals
∫

∆k[s,t]
dx⊗k are

defined for k > p. It is then obvious that if x, y ∈ Ωp([0, T ],Rd), then

1 +

[p]∑
k=1

∫
∆k[s,t]

dx⊗k = 1 +

[p]∑
k=1

∫
∆k[s,t]

dy⊗k
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implies that

1 +
+∞∑
k=1

∫
∆k[s,t]

dx⊗k = 1 +
+∞∑
k=1

∫
∆k[s,t]

dy⊗k.

In other words the signature of a p-rough path is completely determinated by its truncated
signature at order [p]:

S[p](x)s,t = 1 +

[p]∑
k=1

∫
∆k[s,t]

dx⊗k.

For this reason, it is natural to present a p-rough path by this truncated signature at
order [p] in order to stress that the choice of the approximating sequence to contruct the
iterated integrals up to order [p] has been made. This will be further explained in much
more details when we will introduce the notion of geometric rough path over a rough
path.

The following results are straightforward to obtain from the previous lectures by a
limiting argument.

Lemma 2.8 (Chen’s relations). Let x ∈ Ωp([0, T ],Rd), p ≥ 1. For 0 ≤ s ≤ t ≤ u ≤ T ,
and n ≥ 1, ∫

∆n[s,u]

dx⊗n =
n∑
k=0

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).

Theorem 2.9. Let p ≥ 1. There exists a constant C ≥ 0, depending only on p, such that
for every x ∈ Ωp([0, T ],Rd) and k ≥ 1,∥∥∥∥∫

∆k[s,t]

dx⊗k
∥∥∥∥ ≤ Ck(

k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.

If p ≥ 2, the space Ωp([0, T ],Rd) is not a Banach space (it is not a linear space) but
it is a complete metric space for the distance

dΩp([0,T ],Rd)(x, y) =

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j
−var,[0,T ]

.

The structure of Ωp([0, T ],Rd) will be better understood in the next lectures, but let us
remind that if 1 ≤ p < 2, then Ωp([0, T ],Rd) is the closure of C1−var([0, T ],Rd) inside
Cp−var([0, T ],Rd) for the variation distance it is therefore what we denoted C0,p−var([0, T ],Rd).
As a corollary we deduce

Proposition 2.10. Let 1 ≤ p < 2. Then x ∈ Ωp([0, T ],Rd) if and only if

lim
δ→0

sup
Π∈D[s,t],|Π|≤δ

n−1∑
k=0

‖x(tk+1)− x(tk)‖p = 0,

where D[s, t] is the set of subdivisions of [s, t]. In particular, for p < q < 2,

Cq−var([0, T ],Rd) ⊂ Ωp([0, T ],Rd).
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3. Rough linear differential equations

In this lecture we define solutions of linear differential equations driven by p-rough
paths, p ≥ 1 and present the Lyons’ continuity theorem in this setting. Let x ∈
Ωp([0, T ],Rd) be a p-rough path with truncated signature

[p]∑
k=0

∫
∆k[s,t]

dx⊗k,

and let xn ∈ C1−var([0, T ],Rd) be an approximating sequence such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dx⊗jn

∥∥∥∥1/j

p
j
−var,[0,T ]

→ 0.

Let us consider matrices M1, · · · ,Md ∈ Rn×n. We have the following theorem:

Theorem 3.1. Let yn : [0, T ]→ Rn be the solution of the differential equation

yn(t) = y(0) +
d∑
i=1

∫ t

0

Miyn(s)dxin(s).

Then, when n→∞, yn converges in the p-variation distance to some y ∈ Cp−var([0, T ],Rn).
y is called the solution of the rough differential equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Miy(s)dxi(s).

Proof. It is a classical result that the solution of the equation

yn(t) = y(0) +
d∑
i=1

∫ t

0

Miyn(s)dxin(s),

can be expanded as the convergent Volterra series:

yn(t) = yn(s) +
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[s,t]

dxIn

)
yn(s).

Therefore, in particular, for n,m ≥ 0,

yn(t)− yp(t) =
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxIn −
∫

∆k[0,t]

dxIp

)
y(0),

which implies that

‖yn(t)− ym(t)‖ ≤
+∞∑
k=1

Mk

∥∥∥∥∫
∆k[0,t]

dx⊗kn −
∫

∆k[0,t]

dx⊗km

∥∥∥∥ ‖y(0)‖



3. ROUGH LINEAR DIFFERENTIAL EQUATIONS 41

with M = max{‖M1‖, · · · , ‖Md‖}. From the theorem of the previous lecture, there exists
a constant C ≥ 0 depending only on p and

sup
n

[p]∑
j=1

∥∥∥∥∫ dx⊗jn

∥∥∥∥1/j

p
j
−var,[0,T ]

such that for k ≥ 1 and n,m big enough:∥∥∥∥∫
∆k[0,·]

dx⊗kn −
∫

∆k[0,·]
dx⊗km

∥∥∥∥
p−var,[0,T ]

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

 Ck(
k
p

)
!
.

As a consequence, there exists a constant C̃ such that for n,m big enough:

‖yn(t)− ym(t)‖ ≤ C̃

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

.

This already proves that yn converges in the supremum topology to some y. We now have

(yn(t)−yn(s))−(ym(t)−ym(s)) =
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[s,t]

dxInyn(s)−
∫

∆k[s,t]

dxImym(s)

)
,

and we can bound∥∥∥∥∫
∆k[s,t]

dxInyn(s)−
∫

∆k[s,t]

dxImym(s)

∥∥∥∥
≤
∥∥∥∥∫

∆k[s,t]

dxIn

∥∥∥∥ ‖yn(s)− ym(s)‖+ ‖ym(s)‖
∥∥∥∥∫

∆k[s,t]

dxIn −
∫

∆k[s,t]

dxIm

∥∥∥∥
≤
∥∥∥∥∫

∆k[s,t]

dxIn

∥∥∥∥ ‖yn − ym‖∞,[0,T ] + ‖ym‖∞,[0,T ]

∥∥∥∥∫
∆k[s,t]

dxIn −
∫

∆k[s,t]

dxIm

∥∥∥∥
From the theorems of the previous lectures, there exists a constant C ≥ 0, depending
only on p and

sup
n

[p]∑
j=1

∥∥∥∥∫ dx⊗jn

∥∥∥∥1/j

p
j
−var,[0,T ]

such that for k ≥ 1 and n,m big enough∥∥∥∥∫
∆k[s,t]

dx⊗kn

∥∥∥∥ ≤ Ck(
k
p

)
!
ω(s, t)k/p, 0 ≤ s ≤ t ≤ T.

∥∥∥∥∫
∆k[s,t]

dx⊗kn −
∫

∆k[s,t]

dx⊗km

∥∥∥∥ ≤
 [p]∑

j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j
−var,[0,T ]

 Ck(
k
p

)
!
ω(s, t)k/p,



42 4. ROUGH PATHS

where ω is a control such that ω(0, T ) = 1. Consequently, there is a constant C̃, such
that

‖(yn(t)− yn(s))− (ym(t)− ym(s))‖

≤C̃

‖yn − ym‖∞,[0,T ] +

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j
−var,[0,T ]

ω(s, t)1/p

This implies the estimate

‖yn − ym‖p−var,[0,T ] ≤ C̃

‖yn − ym‖∞,[0,T ] +

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j
−var,[0,T ]


and thus gives the conclusion. �

With just a little more work, it is possible to prove the following stronger result whose
proof is let to the reader.

Theorem 3.2. Let yn : [0, T ]→ Rn be the solution of the differential equation

yn(t) = y(0) +
d∑
i=1

∫ t

0

Miyn(s)dxin(s).

and y be the solution of the rough differential equation:

y(t) = y(0) +
d∑
i=1

∫ t

0

Miy(s)dxi(s).

Then, y ∈ Ωp([0, T ],Rd) and when n→∞,

[p]∑
j=1

∥∥∥∥∫ dy⊗j −
∫
dy⊗jn

∥∥∥∥1/j

p
j
−var,[0,T ]

→ 0.

We can get useful estimates for solutions of rough differential equations. For that, we
need the following analysis lemma:

Proposition 3.3. For x ≥ 0 and p ≥ 1,

+∞∑
k=0

xk(
k
p

)
!
≤ pex

p

.

Proof. For α ≥ 0, we denote

Eα(x) =
+∞∑
k=0

xk

(kα)!
.
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This is a special function called the Mittag-Leffler function. From the binomial inequality

Eα(x)2 =
+∞∑
k=0

(
k∑
j=0

1

(jα)! ((k − j)α)!

)
xk

≤ 1

α

+∞∑
k=0

2αk
xk

(kα)!
=

1

α
Eα(2αx).

Thus we proved

Eα(x) ≤ 1

α1/2
Eα(2αx)1/2.

Iterating this inequality, k times we obtain

Eα(x) ≤ 1

α
∑k
j=1

1

2j

Eα(2αkx)1/(2k).

It is known (and not difficult to prove) that

Eα(x) ∼x→∞
1

α
ex

1/α

.

By letting k →∞ we conclude

Eα(x) ≤ 1

α
ex

1/α

.

�

This estimate provides the following result:

Proposition 3.4. Let y be the solution of the rough differential equation:

y(t) = y(0) +
d∑
i=1

∫ t

0

Miy(s)dxi(s).

Then, there exists a constant C depending only on p such that for 0 ≤ t ≤ T ,

‖y(t)‖ ≤ p‖y(0)‖e
CM

(∑[p]
j=1‖

∫
dx⊗jn ‖1/jp

j −var,[0,t]

)p
,

where M = max{‖M1‖, · · · , ‖Md‖}.

Proof. We have

y(t) = y(0) +
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxIn

)
y(0).

Thus we obtain

y(t) ≤

1 +
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mk

∥∥∥∥∫
∆k[0,t]

dxIn

∥∥∥∥
 ‖y(0)‖,

and we conclude by using estimates on iterated integrals of rough paths together with the
previous lemma. �
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4. The Chen-Strichartz expansion formula

The next few lectures will be devoted to the construction of the so-called geometric
rough paths. These paths are the lifts of the p-rough paths in the free nilpotent Lie group
of order p. The construction which is of algebraic and geometric nature will give a clear
understanding and description of the space of rough paths. The starting point of the
geometric rough path construction is the algebraic study of the signature. We present
first the results for continuous paths with bounded variation because the extension to
p-rough paths is more or less trivial.

Let us first remind that if x ∈ C1−var([0, T ],Rd), then the signature of x is defined as
the formal series

S(x)s,t = 1 +
+∞∑
k=1

∑
I∈{1,...,d}k

(∫
s≤t1≤...≤tk≤t

dxi1t1 · · · dx
ik
tk

)
Xi1 · · ·Xik

= 1 +
+∞∑
k=1

∫
∆k[0,T ]

dx⊗k.

If the indeterminates X1, · · · , Xd commute (that is if we work in the commutative
algebra of formal series), then the signature of a path admits a very nice representation.

Indeed, let us denote by Sk the group of the permutations of the index set {1, ..., k}
and if σ ∈ Sk, we denote for a word I = (i1, ..., ik), σ · I the word (iσ(1), ..., iσ(k)). By
commuting X1, · · · , Xd we get

S(x)s,t = 1 +
+∞∑
k=1

∑
I=(i1,...,ik)

Xi1 ...Xik

(
1

k!

∑
σ∈Sk

∫
∆k[s,t]

dxσ·I

)
.

Since ∑
σ∈Sk

∫
∆k[s,t]

dxσ·I = (xi1(t)− xi1(s)) · · · (xik(t)− xik(s)),

we deduce,

S(x)t = 1 +
+∞∑
k=1

1

k!

∑
I=(i1,...,ik)

Xi1 · · ·Xik(x
i1(t)− xi1(s)) · · · (xik(t)− xik(s))

= exp

(
d∑
i=0

(xi(t)− xi(s))Xi

)
,

where the exponential of a formal series Y is, of course, defined as

exp(Y ) =
+∞∑
k=0

Y k

k!
.

As a consequence, the commutative signature of a path is simply the exponential of the
increments of the path. Of course, the formula is only true in the commutative case. In
the general and non-commuting case, it is remarkable that there exists a nice formula
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that expresses the signature as the exponential of a quite explicit series which turns out
to be a Lie series (a notion defined below). We need to introduce first a few notations.

We define the Lie bracket between two elements U and V of R[[X1, · · · , Xd]] by

[U, V ] = UV − V U.

Moreover, if I = (i1, ..., ik) ∈ {1, · · · , d}k is a word, we denote by XI the iterated Lie
bracket which is defined by

XI = [Xi1 , [Xi2 , ..., [Xik−1
, Xik ]...].

Theorem 4.1. [Chen-Strichartz expansion theorem] If x ∈ C1−var([0, T ],Rd), then

S(x)s,t = exp

∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)s,tXI

 , 0 ≤ s ≤ t ≤ T,

where for k ≥ 1, I ∈ {1, · · · , d}k :

• Sk is the set of the permutations of {1, · · · , k};
• If σ ∈ Sk, e(σ) is the cardinality of the set

{j ∈ {1, · · · , k − 1}, σ(j) > σ(j + 1)},

•

ΛI(x)s,t =
∑
σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

) ∫
∆k[s,t]

dxσ
−1·I .

Remark 4.2. The first terms in the Chen-Strichartz formula are:

(1) ∑
I=(i1)

ΛI(x)s,tXI =
d∑

k=1

(xi(t)− xi(s))Xi;

(2) ∑
I=(i1,i2)

ΛI(x)s,tXI =
1

2

∑
1≤i<j≤d

[Xi, Xj]

∫ t

s

xi(u)dxj(u)− xj(u)dxi(u).

The proof proceeds in several steps. To simplify a little the notations we will assume
s = 0, t = T and x(0) = 0. The idea is to prove first the result when the path x is
piecewise linear that is

x(t) = x(ti) + ai(t− ti)
on the interval [ti, ti+1) where 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . And, then, we will use a
limiting argument.

The key point here is the multiplicativity property for the signature that already was
pointed out in a previous lecture: For 0 ≤ s ≤ t ≤ u ≤ T ,

S(x)s,u = S(x)s,tS(x)t,u.
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By using inductively the multiplicative property, we obtain

S(x)0,T =
N−1∏
n=0

1 +
+∞∑
k=1

∑
I=(i1,...ik)

Xi1 ...Xik

∫
∆k[tn,tn+1]

dxI


Since, on [tn, tn+1),

dx(t) = andt,

we have ∫
∆k[tn,tn+1]

dxI = ai1n · · · aikn
∫

∆k[tn,tn+1]

dti1 · · · dtik = ai1n · · · aikn
(tn+1 − tn)k

k!
.

Therefore

S(x)0,T =
N−1∏
n=0

1 +
+∞∑
k=1

∑
I=(i1,...ik)

Xi1 ...Xika
i1
n · · · aikn

(tn+1 − tn)k

k!


=

N−1∏
n=0

exp

(
(tn+1 − tn)

d∑
i=0

ainXi

)
.

We now use the Baker-Campbell-Hausdorff-Dynkin formula that gives a quite explicit
formula for the product of exponentials of non commuting variables:

Proposition 4.3 (Baker-Campbell-Hausdorff-Dynkin formula). If y1, · · · , yN ∈ Rd then,

N∏
n=1

exp

(
d∑
i=1

yinXi

)
= exp

∑
k≥1

∑
I∈{1,...,d}k

βI(y1, · · · , yN)XI

 ,

where for k ≥ 1, I ∈ {1, ..., d}k :

βI(y1, · · · , yN) =
∑
σ∈Sk

∑
1=j0≤j1≤···≤jN−1≤k

(−1)e(σ)

j1! · · · jN−1!k2

(
k − 1
e(σ)

) N∏
ν=1

y
σ−1(ijν−1+1)
ν · · · yσ−1(ijν )

ν .

We get therefore:

S(x)0,T = exp

∑
k≥1

∑
I∈{1,...,d}k

βI(t1a0, · · · , (tN − tN−1)aN−1)XI

 .

It is finally an exercise to check, by using the Chen relations, that:

βI(t1a0, · · · , (tN − tN−1)aN−1) =
∑
σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

) ∫
∆k[0,T ]

dxσ
−1·I .
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We conclude that if x is piecewise linear then the formula

S(x)s,t = exp

∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)s,tXI

 , 0 ≤ s ≤ t ≤ T

holds. Finally, if x ∈ C1−var([0, T ],Rd), then we can consider the sequence xn of linear
interpolations along a subdivision of [0, T ] whose mesh goes to 0. For this sequence, all the
iterated integrals

∫
∆k[0,T ]

dxIn will converge to
∫

∆k[0,T ]
dxI (see for instance the proposition

2.7 in the book by Friz-Victoir) and the result follows.

5. Magnus expansion

In the previous lecture, we proved the Chen’s expansion formula which establishes
the fact that the signature of a path is the exponential of a Lie series. This expansion
is of course formal but analytically makes sense in a number of situations that we now
describe. The first case of study are linear equations.

Let us consider matrices M1, · · · ,Md ∈ Rn×n and let yn : [0, T ]→ Rn be the solution
of the differential equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Miy(s)dxi(s),

where x ∈ C1−var([0, T ],Rd). The solution y admits a representation as an absolutely
convergent Volterra series

y(t) = y(0) +
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxI
)
y(0).

The formal analogy between this expansion and the signature leads to the following result:

Proposition 5.1. There exists τ > 0 such that for 0 ≤ t ≤ τ ,

y(t) = exp

∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)tMI

 y(0),

where

MI = [Mi1 , [Mi2 , ..., [Mik−1
,Mik ]...],

is the iterated Lie bracket and

ΛI(x)t =
∑
σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

) ∫
∆k[0,t]

dxσ
−1·I .
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Proof. We only give the sketch of the proof. Details can be found in this paper by
Strichartz. First, we observe that a combinatorial argument shows that∑

σ∈Sk

1(
k − 1
e(σ)

) ≤ C

2k
k!
√
k.

On the other hand, we have the estimate∣∣∣∣∫
∆k[0,t]

dxσ
−1·I
∣∣∣∣ ≤ ∫

∆k[0,t]

‖dxσ−1·I‖ ≤ 1

k!
‖x‖k1−var,[0,t].

As a consequence, we obtain

|ΛI(x)t| ≤
C

2kk3/2
‖x‖k1−var,[0,t].

For the matrix norm we have the estimate

‖MI‖ ≤ Ck,

so we conclude that for some constant C̃,∥∥∥∥∥∥
∑

I∈{1,··· ,d}k
ΛI(x)tMI

∥∥∥∥∥∥ ≤ C̃k

k3/2
‖x‖k1−var,[0,t].

We deduce that if τ is such that ‖x‖1−var,[0,τ ] <
1
C̃

, then the series∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)tMI

is absolutely convergent on the interval [0, τ ]. At this point, we can observe that the Chen’s
expansion formula is a purely algebraic statement, thus expanding the exponential

exp

∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)tMI

 y(0)

and rearranging the terms leads to

y(0) +
+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxI
)
y(0)

which is equal to y(t). �

Another framework, close to this linear case, in which the Chen’s expansion makes
sense are Lie groups. Let G be a Lie group acting on Rd. Let us denote by g the Lie
algebra of G. Elements of g can be seen as vector fields on Rd. Indeed, for X ∈ g, we can
define

X(x) = lim
t→0

etX(x)− x
t

,

where etX is the exponential mapping on the Lie group G. With this identification, it
is easily checked that the Lie bracket in the Lie algebra coincides with the Lie bracket



6. FREE CARNOT GROUPS 49

of vector fields and that the exponential map etX in the group corresponds to the flow
generated by the vector field X. As above we get then the following result:

Proposition 5.2. Let V1, · · · , Vd ∈ g and x ∈ C1−var([0, T ],Rd). Let us consider the
differential equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s).

There exists τ > 0 such that for 0 ≤ t ≤ τ ,

y(t) = exp

∑
k≥1

∑
I∈{1,··· ,d}k

ΛI(x)tVI

 y(0).

A special case will be of interest for us: The case where the Lie group G is nilpotent.
Let us recall that a Lie group G is said to be nilpotent of order N if every bracket of
length greater or equal to N + 1 is 0. In that case, the sum in the exponential is finite
and the representation is then of course valid on the whole time interval [0, T ].

6. Free Carnot groups

We introduce here the notion of Carnot group, which is the correct structure to un-
derstand the algebra of the iterated integrals of a path up to a given order. It is worth
mentioning that these groups play a fundamental role in sub-Riemannian geometry as
they appear as the tangent cones to sub-Riemannian manifolds.

Definition 6.1. A Carnot group of step (or depth) N is a simply connected Lie group G
whose Lie algebra can be written

V1 ⊕ ...⊕ VN ,
where

[Vi,Vj] = Vi+j
and

Vs = 0, for s > N.

We have some basic examples of Carnot groups.

Example 6.2. The group
(
Rd,+

)
is the only commutative Carnot group.

Example 6.3. Consider the set Hn = R2n × R endowed with the group law

(x, α) ? (y, β) =

(
x+ y, α + β +

1

2
ω(x, y)

)
,

where ω is the standard symplectic form on R2n, that is

ω(x, y) = xt
(

0 −In
In 0

)
y.

On hn the Lie bracket is given by

[(x, α), (y, β)] = (0, ω(x, y)) ,
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and it is easily seen that

hn = V1 ⊕ V2,

where V1 = R2n × {0} and V2 = {0} × R. Therefore Hn is a Carnot group of depth 2.

The Carnot group G is said to be free if g is isomorphic to the nilpotent free Lie
algebra with d generators. In that case, dimVj is the number of Hall words of length j in
the free algebra with d generators. A combinatorial argument shows then that:

dimVj =
1

j

∑
i|j

µ(i)d
j
i , j ≤ N,

where µ is the Möbius function. A consequence from this is that when N → +∞,

dim g ∼ dN

N
.

The free Carnot groups are the ones that will be the most relevant for us, so from now
on, we will restrict our attention to them.

Let G be a free Carnot group of step N . Notice that the vector space V1, which is
called the basis of G, Lie generates g, where g denotes the Lie algebra of G. Since G is
step N nilpotent and simply connected, the exponential map is a diffeomorphism and the
Baker-Campbell-Hausdorff formula therefore completely characterizes the group law of G
because for U, V ∈ g,

expU expV = exp (P (U, V ))

for some universal Lie polynomial P whose first terms are given by

P (U, V ) = U + V + 1
2
[U, V ] + 1

12
[[U, V ], V ]− 1

12
[[U, V ], U ]

− 1
48

[V, [U, [U, V ]]]− 1
48

[U, [V, [U, V ]]] + · · · .
(see Appendix B for an explicit formula). On g we can consider the family of linear oper-
ators δt : g→ g, t ≥ 0 which act by scalar multiplication ti on Vi. These operators are Lie
algebra automorphisms due to the grading. The maps δt induce Lie group automorphisms
∆t : G→ G which are called the canonical dilations of G

It is an interesting fact that every free Carnot group of step N is isomorphic to some
Rm endowed with a polynomial group law. Indeed, let X1, · · · , Xd be a basis of V1. From
the Hall-Witt theorem we can construct a basis of g which is adapted to the grading

g = V1 ⊕ · · · ⊕ VN ,
and such that every element of this basis is an iterated bracket of the Xi’s. Such basis,
which can be made quite explicit, will be referred to as a Hall basis over X1, · · · , Xd. Let
B be such a basis. For X ∈ g, let [X]B be the coordinate vector of X in the basis B. If
we denote by m the dimension of g, we see that we can define a group law ? on Rm by
the requirement that for X, Y ∈ g,

[X]B ? [Y ]B = [PN(X, Y )]B = [ln(eXeY )]B.

It is then clear that (Rm, ?) is a Carnot group of step N whose Lie bracket is given by:

[[X]B, [Y ]B] = [[X, Y ]]B.
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Therefore, every free Carnot group of step N such that dimV1 = d is isomorphic to
(Rm, ?). Another representation of the free Carnot group of step N which is particularly
adapted to rough paths theory is given in the framework of formal series. As before, let
us denote by R[[X1, · · · , Xd]] the set formal series. Let us denote by RN [X1, · · · , Xd] the
set of truncated series at order N , that is R[[X1, · · · , Xd]] quotiented by Xi1 · · ·Xik = 0 if
k ≥ N+1. In this context, the free nilpotent Lie algebra of order N can be identified with
the Lie algebra generated by X1, · · · , Xd inside RN [X1, · · · , Xd], where the bracket is of
course given by the anticommutator. This representation of the free nilpotent Lie algebra
of depth N shall be denoted by gN(Rd) in the sequel of the course. The free nilpotent
group of step can then be represented as GN(Rd) = exp(gN(Rd)) where the exponential
map is the usual exponential of formal series.

We are now ready for the definition of the lift of a path in GN(Rd).

Definition 6.4. Let x ∈ C1−var([0, T ],Rd). The GN(Rd) valued path

N∑
k=0

∫
∆k[0,t]

dx⊗k, 0 ≤ t ≤ T,

is called the lift of x in GN(Rd) and will be denoted by SN(x).

It is worth noticing that SN(x) is indeed valued in GN(Rd) because from the Chen’s
expansion formula:

SN(x)(t) = exp

 N∑
k=1

∑
I∈{1,··· ,d}k

ΛI(x)tXI

 ,

where the notations have been introduced before. The multiplicativity property of the
signature also immediately implies that for s ≤ t,

SN(x)(t) = SN(x)(s) exp

 N∑
k=1

∑
I∈{1,··· ,d}k

ΛI(x)s,tXI

 .

7. The Carnot-Carathéodory distance

In this Lecture we introduce a canonical distance on a Carnot group. This distance
is naturally associated to the sub-Riemannian structure which is carried out by a Carnot
group. It plays a fundamental role in the rough paths topology. Let GN(Rd) be the free
Carnot group over Rd. Remember that if x ∈ C1−var([0, T ],Rd), then we denote by SN(x)
the lift of x in GN(Rd). The first important concept is the notion of horizontal curve.

Definition 7.1. A curve y : [0, 1] → GN(Rd) is said to be horizontal if there exists
x ∈ C1−var([0, T ],Rd) such that y = SN(x).

It is remarkable that any two points of GN(Rd) can be connected by a horizontal
curve.

Theorem 7.2. Given two points g1 and g2 ∈ GN(Rd), there is at least one x ∈ C1−var([0, T ],Rd)
such that g1SN(x)(1) = g2.
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Proof. Let us denote G the subgroup of diffeomorphisms GN(Rd)→ GN(Rd) gener-
ated by the one-parameter subgroups corresponding to e1, · · · , ed. The Lie algebra of G
can be identified with the Lie algebra generated by X1, · · · , Xd, i.e. gN(Rd). We deduce
that G can be identified with GN(Rd) itself, so that it acts transitively on G. It means
that for every x ∈ GN(Rd), the map G → GN(Rd), g → g(x) is surjective. Thus, every
two points in G can be joined by a piecewise smooth horizontal curve where each piece is
a segment of an integral curve of one of the vector fields Xi. �

Remark 7.3. In the above proof, the horizontal curve constructed to join the two points
is not smooth. Nevertheless, it can be shown that it is always possible to connect two
points with a smooth horizontal curve.

This theorem is a actually a very special case of the so-called Chow-Rashevski theorem
which is one of the cornerstones of sub-Riemannian geometry. We now are ready for the
definition of the Carnot-Carathéodory distance.

Definition 7.4. For g1, g2 ∈ GN(Rd), we define

d(g1, g2) = inf
S(g1,g2)

‖x‖1−var,[0,1],

where
S(g1, g2) = {x ∈ C1−var([0, 1],Rd), g1SN(x)(1) = g2}.

d(g1, g2) is called the Carnot-Carathéodory distance between g1 and g2.

The first thing to prove is that d is indeed a distance.

Lemma 7.5. The Carnot-Carathéodory distance is indeed a distance.

Proof. The symmetry and the triangle inequality are easy to check and we let the
reader find the arguments. The last thing to prove is that d(g1, g2) = 0 implies g1 = g2.
From the definition of d it clear that dR ≤ d where dR is the Riemmanian measure on
GN(Rd). It follows that d(g1, g2) = 0 implies g1 = g2. �

We then observe the following properties of d:

Proposition 7.6.

• For g1, g2 ∈ GN(Rd),

d(g1, g2) = d(g2, g1) = d(0, g−1
1 g2).

• Let (∆t)t≥0 be the one parameter family of dilations on GN(Rd). For g1, g2 ∈
GN(Rd), and t ≥ 0,

d(∆tg1,∆tg2) = td(g1, g2).

Proof. The first part of the proposition stems from the fact that for every x ∈
C1−var([0, T ],Rd), SN(x)−1 = SN(−x), so that g1SN(x)(1) = g2 is equivalent to g2SN(−x)(1) =
g1 which also equivalent to SN(x)(1) = g−1

1 g2. For the second part, we observe that for
t ≥ 0, ∆tSN(x) = SN(tx). �

The Carnot-Carathéodory distance is pretty difficult to explicitly compute in general.
It is often much more convenient to estimate using a so-called homogeneous norm.
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Definition 7.7. A homogeneous norm on GN(Rd) is a continuous function ‖ · ‖: GN(Rd)→
[0,+∞), such that:

(1) ‖ ∆tx ‖= t ‖ x ‖, t ≥ 0, x ∈ GN(Rd);
(2) ‖ x−1 ‖=‖ x ‖, x ∈ GN(Rd);
(3) ‖ x ‖= 0 if and only if x = 0.

It turns out that the Carnot-Carathéodory distance is equivalent to any homogeneous
norm in the following sense:

Theorem 7.8. Let ‖ · ‖ be a homogeneous norm on GN(Rd). There exist two positive
constants C1 and C2 such that for every x, y ∈ GN(Rd),

A‖x−1y‖ ≤ d(x, y) ≤ B‖x−1y‖.

Proof. By using the left invariance of d, it is of course enough to prove that for every
x ∈ GN(Rd),

A‖x‖ ≤ d(0, x) ≤ B‖x‖.
We first prove that the function x→ d(0, x) is bounded on compact sets (of the Riemann-
ian topology of the Lie group GN(Rd)). As we have seen before, every x ∈ GN(Rd) can
be written as a product:

x =
N∏
i=1

etiXki .

From the very definition of the distance, we have then

d(0, x) ≤ d

(
0,

N∏
i=1

etiXki

)
≤

N∑
i=1

|ti|.

It is not difficult to see that
∑N

i=1 |ti| can uniformly be bounded on compact sets, therefore
d(0, x) is bounded on compact sets. Consider now the compact set

K = {x ∈ GN(Rd), ‖x‖ = 1}.
Since d(0, x) is bounded on K, we deduce that there exists a constant B such that for
every x ∈ K,

d(0, x) ≤ B.

Since dR ≤ d, where dR is the Riemannian distance, we deduce that there exists a constant
A such that for every x ∈ K,

d(0, x) ≥ A.

Now, for every x ∈ GN(Rd), x 6= 0, we deduce that

A ≤ d
(
0,∆1/‖x‖x

)
≤ B.

This yields the expected result. �

Let us now finally give an example of a homogeneous norm which is particularly
adapted to rough paths theory. Write the stratification of gN(Rd) as:

gN(Rd) = V1 ⊕ · · · ⊕ VN



54 4. ROUGH PATHS

and denote by πi the projection onto Vi. Let us denote by ‖ · ‖ the norm on gN(Rd) that
comes from the norm on formal series. Then, it is easily checked that

ρ(g) =
N∑
i=1

‖πi(g)‖1/i

is an homogeneous norm on GN(Rd). This homogeneous norm is particulary adapted to
the study of paths because if x ∈ C1−var([0, T ],Rd), then one has:

ρ
(
(SN(x)(s))−1SN(x)(t)

)
=

N∑
k=1

∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥1/k

We finally quote the following result, not difficult to prove which is often referred to
as the ball-box estimate.

Proposition 7.9. There exists a constant C such that for every x, y ∈ GN(Rd),

d(x, y) ≤ C max{‖x− y‖, ‖x− y‖1/N max{1, d(0, x)1−1/N}}.
and

‖x− y‖ ≤ C max{d(x, y) max{1, d(0, x)N−1}, d(x, y)N}.
In particular, for every compact set K ⊂ GN(Rd), there is a constant CK such that for
every x, y ∈ K,

1

CK
‖x− y‖ ≤ d(x, y) ≤ CK‖x− y‖1/N .

Proof. See the book by Friz-Victoir, page 152. �

8. Geometric rough paths

Definition 8.1. A continuous path x : [s, t]→ GN(Rd) is said to have a bounded variation
on [s, t], if the 1-variation of x on [s, t], which is defined as

‖x‖1−var;[s,t] := sup
Π∈D[s,t]

n−1∑
k=0

d(x(tk+1), x(tk)),

is finite, where d is the Carnot-Carathéodory distance on GN(Rd). The space of continuous
bounded variation paths x : [s, t]→ Rd, will be denoted by C1−var([s, t],GN(Rd)).

The 1-variation distance between x, y ∈ C1−var([s, t],GN(Rd)) is then defined as

d1−var;[s,t] = sup
Π∈D[s,t]

n−1∑
k=0

d(x(tk)
−1x(tk+1), y(tk)

−1y(tk+1)).

As for the linear case the following proposition is easy to prove:

Proposition 8.2. Let x ∈ C1−var([0, T ],GN(Rd)). The function (s, t) → ‖x‖1−var,[s,t] is
additive, i.e for 0 ≤ s ≤ t ≤ u ≤ T ,

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] = ‖x‖1−var,[s,u],
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and controls x in the sense that for 0 ≤ s ≤ t ≤ T ,

d(x(s), x(t)) ≤ ‖x‖1−var,[s,t].

The function s→ ‖x‖1−var,[0,s] is moreover continuous and non decreasing.

We will denote C1−var
0 ([0, T ],GN(Rd) the space of continuous bounded variation paths

that start at 0. It turns out that C1−var
0 ([0, T ],GN(Rd)) is always isometric to C1−var

0 ([0, T ],Rd).

Theorem 8.3. For every, x ∈ C1−var
0 ([0, T ],Rd), we have

‖SN(x)‖1−var;[0,T ] = ‖x‖1−var;[0,T ].

Moreover, for every y ∈ C1−var
0 ([0, T ],GN(Rd), there exists one and only one x ∈ C1−var

0 ([0, T ],Rd)
such that

y = SN(x).

Proof. Let x ∈ C1−var
0 ([0, T ],Rd). From the very definition of the Carnot-Carathéodory

distance, for 0 ≤ s ≤ t ≤ T , we have

d(SN(x)(s), SN(x)(t)) ≥ ‖x‖1−var,[s,t].

As a consequence we obtain,

‖SN(x)‖1−var;[0,T ] ≥ ‖x‖1−var;[0,T ].

On the other hand, SN(x) is the solution of the differential equation

SN(x)(t) =
d∑
i=1

∫ t

0

Xi(SN(x)(s))dxi(s), 0 ≤ t ≤ T.

This implies,

d (SN(x)(s), SN(x)(t)) ≤
∫ t

s

‖dx(u)‖ = ‖x‖1−var,[s,t].

Finally, let y ∈ C1−var
0 ([0, T ],GN(Rd). Let x be the projection of y onto Rd. From

the theorem of equivalence of homogeneous norms, we deduce that x has a bounded
variation in Rd. We claim that y = SN(x). Consider the path z = ySN(x)−1. This is a
bounded variation path whose projection on Rd is 0. We want to prove that it implies
that z = 0. Denote by z2 the projection of z onto G2(Rd). Again from the equivalence
of homogeneous norms, we see that z2 has a bounded variation in G2(Rd). Since the
projection of z2 on Rd is 0, we deduce that z2 is in the center of G2(Rd), which implies
that z2(s)−1z2(t) = z2(t) − z2(s). From the equivalence of homogeneous norms, we have
then

d(z2(s), z2(t)) ' ‖z2(t)− z2(s)‖1/2.

Since z2 has a bounded variation in G2(Rd), it has thus a 1/2-variation for the Euclidean
norm. This implies z2 = 0. Using the same argument inductively shows that for n ≤ N ,
the projection of z onto Gn(Rd) will be 0. We conclude z = 0. �

As a conclusion, bounded variation paths in Carnot groups are the lifts of the bounded
variation paths in Rd. As we will see, the situation is very different for paths with bounded
p-variation when p ≥ 2.
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Definition 8.4. Let p ≥ 1. A continuous path x : [s, t] → GN(Rd) is said to have a
bounded p-variation on [s, t], if the p-variation of x on [s, t], which is defined as

‖x‖p−var;[s,t] :=

(
sup

Π∈D[s,t]

n−1∑
k=0

d(x(tk+1), x(tk))
p

)1/p

,

is finite. The space of continuous paths x : [s, t]→ Rd with a p-bounded variation will be
denoted by Cp−var([s, t],GN(Rd)).

The p-variation distance between x, y ∈ Cp−var([s, t],GN(Rd)) is then defined as

dp−var;[s,t](x, y) =

(
sup

Π∈D[s,t]

n−1∑
k=0

d(x(tk)
−1x(tk+1), y(tk)

−1y(tk+1))p

)1/p

.

As for Rd valued paths, we restrict our attention to p ≥ 1 because any path with a p-
bounded variation, p < 1 needs to be constant. We have then the following theorem that
extends the previous result. The proof is somehow similar to the previous result, so we
let the reader fill the details.

Theorem 8.5. Let 1 ≤ p < 2. For every y ∈ Cp−var
0 ([0, T ],GN(Rd), there exists one and

only one x ∈ Cp−var
0 ([0, T ],Rd) such that

y = SN(x).

Moreover, we have

‖x‖p−var;[0,T ] ≤ ‖SN(x)‖p−var;[0,T ] ≤ C‖x‖p−var;[0,T ].

For p ≥ 2, the situation is different as we are going to explain in the next Lectures.
This can already be understood by using the estimates that were obtained in a previous
Lecture. Indeed, we have the following very important proposition that already shows
the connection between p-rough paths and paths with a bounded p-variation in Carnot
groups:

Proposition 8.6. Let p ≥ 1 and N ≥ [p]. There exist constants C1, C2 > 0 such that for
every x ∈ C1−var

0 ([0, T ],GN(Rd),

C1

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

 ≤ ‖SN(x)‖p−var;[s,t] ≤ C2

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]


Proof. This is a consequence of the theorem about the equivalence of homogeneous

norms on Carnot groups. Write the stratification of gN(Rd) as:

gN(Rd) = V1 ⊕ · · · ⊕ VN
and denote by πi the projection onto Vi. Let us denote by ‖ · ‖ the norm on gN(Rd) that
comes from the norm on formal series. Then,

ρ(g) =
N∑
i=1

‖πi(g)‖1/i
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is an homogeneous norm on GN(Rd). Thus, there exist constants C1, C2 > 0 such that
for every g ∈ GN(Rd),

C1ρ(g) ≤ d(0, g) ≤ C2ρ(g).

In particular, we get

C1ρ
(
SN(x)(s)−1SN(x)(t)

)
≤ d (SN(x)(s), SN(x)(t)) ≤ C2ρ

(
SN(x)(s)−1SN(x)(t)

)
.

Let us now observe that

ρ
(
(SN(x)(s))−1SN(x)(t)

)
=

N∑
k=1

∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥1/k

and that, from a previous lecture k ≥ [p],∥∥∥∥∫
∆k[s,t]

dx⊗k
∥∥∥∥ ≤ Ck(

k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j
−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.

The conclusion easily follows. �

In this Lecture, the geometric concepts introduced in the previous lectures are now
used to revisit the notion of p-rough path that was introduced before. We will see that
using Carnot groups gives a perfect description of the space of p-rough paths through the
notion of geometric rough path.

Definition 8.7. Let p ≥ 1. An element x ∈ Cp−var
0 ([0, T ],G[p](Rd)) is called a geometric

p-rough path if there exists a sequence xn ∈ C1−var
0 ([0, T ],G[p](Rd)) that converges to

x in the p-variation distance. The space of geometric p-rough paths will be denoted by
ΩGp([0, T ],Rd).

To have it in mind, we recall the definition of a p-rough path.

Definition 8.8. Let p ≥ 1 and x ∈ Cp−var
0 ([0, T ],Rd). We say that x is a p-rough path if

there exists a sequence xn ∈ C1−var
0 ([0, T ],Rd) such that xn → x in p-variation and such

that for every ε > 0, there exists N ≥ 0 such that for m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ ε.

Our first goal is of course to relate the notion of geometric rough path to the notion
of rough path.

Proposition 8.9. Let y ∈ Cp−var
0 ([0, T ],G[p](Rd)) be a geometric p-rough path, then the

projection of y onto Rd is a p-rough path.

Proof. Let y ∈ Cp−var
0 ([0, T ],G[p](Rd)) be a geometric p-rough path and let us con-

sider a sequence yn ∈ C1−var
0 ([0, T ],G[p](Rd)) that converges to y in the p-variation dis-

tance. Denote by x the projection of y onto Rd and by xn the projection of yn. From a
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previous theorem yn = S[p](xn). It is clear that xn converges to x in p-variation. So, we
want to prove that for every ε > 0, there exists N ≥ 0 such that for m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ ε.

Let us now keep in mind that

dp−var;[s,t](yn, ym) =

(
sup

Π∈D[s,t]

n−1∑
k=0

d(yn(tk)
−1yn(tk+1), ym(tk)

−1ym(tk+1))p

)1/p

.

and consider the control

ω(s, t) =

(
dp−var;[s,t](yn, ym)

dp−var;[0,T ](yn, ym)

)p
+

(
dp−var;[s,t](0, ym)

dp−var;[0,T ](0, ym)

)p
.

We have∥∥∥∥∫ dx⊗kn −
∫
dx⊗km

∥∥∥∥
p
k
−var,[0,T ]

=

 sup
Π∈D[0,T ]

n−1∑
j=0

∥∥∥∥∥
∫

∆k[tj ,tj+1]

dx⊗kn −
∫

∆k[tj ,tj+1]

dx⊗km

∥∥∥∥∥
p/k
k/p

≤

 sup
0≤s≤t≤T

∥∥∥∫∆k[s,t]
dx⊗kn −

∫
∆k[s,t]

dx⊗km

∥∥∥
ω(s, t)k/p

ω(0, T )k/p

From the ball-box estimate, there is a constant C such that for x, y ∈ G[p](Rd):

‖x− y‖ ≤ C max{d(x, y) max{1, d(0, x)N−1}, d(x, y)N}.
We deduce∥∥∥∫∆k[s,t]

dx⊗kn −
∫

∆k[s,t]
dx⊗km

∥∥∥
ω(s, t)k/p

≤C max
{
dp−var;[0,T ](yn, ym) max{1, dp−var;[0,T ](0, ym)N−1}, dp−var;[0,T ](yn, ym)N

}
and thus ∥∥∥∥∫ dx⊗kn −

∫
dx⊗km

∥∥∥∥
p
k
−var,[0,T ]

≤ C ′dp−var;[0,T ](yn, ym)

This is the estimate we were looking for. �

Conversely, any p-rough path admits at least one lift as a geometric p-rough path.

Proposition 8.10. Let x ∈ C1−var
0 ([0, T ],Rd) be a p-rough path. There exists a geometric

p-rough path y ∈ ΩGp([0, T ],Rd) such that the projection of y onto Rd is x.

Proof. Consider a sequence xn ∈ C1−var
0 ([0, T ],Rd) such that xn → x in p-variation

and such that for every ε > 0, there exists N ≥ 0 such that for m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

≤ ε.
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We claim that ynS[p](xn) is a sequence that converges in p-variation to some y ∈ ΩGp([0, T ],Rd)
such that the projection of y onto Rd is x. Let us consider the control

ω(s, t) =


∑[p]

j=1

∥∥∫ dx⊗jn − ∫ dx⊗jm ∥∥1/j
p
j
−var,[s,t]∑[p]

j=1

∥∥∫ dx⊗jn − ∫ dx⊗jm ∥∥1/j
p
j
−var,[0,T ]


p

+

(
dp−var;[s,t](0, ym)

dp−var;[0,T ](0, ym)

)p
.

We have

dp−var;[0,T ](yn, ym) ≤
(

sup
0≤s≤t≤T

d (yn(s)−1yn(t), ym(s)−1ym(t))

ω(s, t)1/p

)
ω(0, T )1/p

and argue as above to get, thanks to the ball-box theorem, an estimate like

dp−var;[0,T ](yn, ym) ≤ C

 [p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j
−var,[0,T ]

1/N

�

In general, we stress that there may be several geometric rough paths with the same
projection onto Rd. The following proposition is useful to prove that a given path is a
geometric rough path.

Proposition 8.11. If q < p, then Cq−var
0 ([0, T ],G[p](Rd)) ⊂ ΩGp([0, T ],Rd).

Proof. As in Euclidean case, it is not difficult to prove that x ∈ ΩGp([0, T ],Rd) if
and only if

lim
δ→0

sup
Π∈∆[s,t],|Π|≤δ

n−1∑
k=0

d(x(tk), x(tk+1))p = 0,

which is easy to check when x ∈ Cq−var
0 ([0, T ],G[p](Rd)). �

If y ∈ ΩGp([0, T ],Rd), then as we just saw, the projection x of y onto Rd is a p-rough
path and we can write

y(t) = 1 +

[p]∑
k=1

∫
∆k[0,t]

dx⊗k.

This is a convenient way to write geometric rough paths that we will often use in the
sequel. For N ≥ [p] we can then define the lift of y in ΩGN([0, T ],Rd) as:

SN(y)(t) = 1 +
N∑
k=1

∫
∆k[0,t]

dx⊗k.

The following result is then easy to prove by using the previous results.

Proposition 8.12. Let p ≥ 1 and N ≥ [p]. There exist constants C1, C2 > 0 such that
for every y ∈ ΩGp([0, T ],Rd),

‖y‖p−var,[0,T ] ≤ ‖SN(y)‖p−var;[0,T ] ≤ C2‖y‖p−var,[0,T ].
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9. The Brownian motion as a rough path

It is now time to give a fundamental example of rough path: The Brownian motion.
As we are going to see, a Brownian motion is a p-rough path for any 2 < p < 3.

We first remind the following basic definition.

Definition 9.1. Let (Ω,F ,P) be a probability space. A continuous d-dimensional process
(Bt)t≥0 is called a standard Brownian motion if it is a Gaussian process with mean function

m(t) = 0

and covariance function

R(s, t) = E(Bs ⊗Bt) = min(s, t)Id.

For a Brownian motion (Bt)t≥0, the following properties are easy to check:

(1) B0 = 0 a.s.;
(2) For any h ≥ 0, the process (Bt+h −Bh)t≥0 is a standard Brownian motion;
(3) For any t > s ≥ 0, the random variable Bt − Bs is independent of the σ-algebra

σ(Bu, u ≤ s).
(4) For every c > 0, the process (Bct)t≥0 has the same law as the process (

√
cBt)t≥0.

An easy computation shows that for n ≥ 0 and 0 ≤ s ≤ t:

E
(
‖Bt −Bs‖2n

)
=

(2n)!

2nn!
(t− s)n.

Therefore, as a consequence of the Kolmogorov continuity theorem, for any T ≥ 0 and
0ε < 1/2, there exists a finite random variable CT,ε such that for 0 ≤ s ≤ t ≤ T ,

‖Bt −Bs‖ ≤ CT,ε|t− s|1/2−ε.

We deduce in particular that for any p > 2, we have almost surely

‖B‖p−var,[0,T ] < +∞.

We now prove that for 1 ≤ p < 2, we have almost surely

‖B‖p−var,[0,T ] = +∞.

In the sequel, if

∆n[0, t] = {0 = tn0 ≤ tn1 ≤ ... ≤ tnn = t}
is a subdivision of the time interval [0, t], we denote by

| ∆n[0, t] |= max{| tnk+1 − tnk |, k = 0, ..., n− 1},

the mesh of this subdivision.

Proposition 9.2. Let (Bt)t≥0 be a standard Brownian motion. Let t ≥ 0. For every
sequence ∆n[0, t] of subdivisions such that

lim
n→+∞

| ∆n[0, t] |= 0,
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the following convergence takes place in L2 (and thus in probability),

lim
n→+∞

n∑
k=1

∥∥∥Btnk
−Btnk−1

∥∥∥2

= t.

As a consequence, if 1 ≤ p < 2, for every T ≥ 0, almost surely,

‖B‖p−var,[0,T ] = +∞.

Proof. We prove the result in dimension 1 and let the reader adapt it to the multi-
dimensional setting. Let us denote

Vn =
n∑
k=1

(
Btnk
−Btnk−1

)2

.

Thanks to the stationarity and the independence of Brownian increments, we have:

E
(
(Vn − t)2

)
= E

(
V 2
n

)
− 2tE (Vn) + t2

=
n∑

j,k=1

E
((

Btnj
−Btnj−1

)2 (
Btnk
−Btnk−1

)2
)
− t2

=
n∑
k=1

E
((

Btnj
−Btnj−1

)4
)

+ 2
n∑

1≤j<k≤n

E
((

Btnj
−Btnj−1

)2 (
Btnk
−Btnk−1

)2
)
− t2

=
n∑
k=1

(tnk − tnk−1)2E
(
B4

1

)
+ 2

n∑
1≤j<k≤n

(tnj − tnj−1)(tnk − tnk−1)− t2

= 3
n∑
k=1

(tnj − tnj−1)2 + 2
n∑

1≤j<k≤n

(tnj − tnj−1)(tnk − tnk−1)− t2

= 2
n∑
k=1

(tnk − tnk−1)2

≤ 2t | ∆n[0, t] |→n→+∞ 0.

Let us now prove that, as a consequence of this convergence, the paths of the process
(Bt)t≥0 almost surely have an infinite p-variation on the time interval [0, t] if 1 ≤ p < 2.
Reasoning by absurd, let us assume that ‖B‖p−var,[0,t] ≤ M . From the above result,
since the convergence in probability implies the existence of an almost surely convergent
subsequence, we can find a sequence of subdivisions ∆n[0, t] whose mesh tends to 0 and
such that almost surely,

lim
n→+∞

n∑
k=1

(
Btnk
−Btnk−1

)2

= t.

We get then
n∑
k=1

(
Btnk
−Btnk−1

)2

≤Mp sup
1≤k≤n

| Btnk
−Btnk−1

|2−p→n→+∞ 0,
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which is clearly absurd. �

Therefore only the case p = 2 is let open. It is actually possible to prove that:

Proposition 9.3. For every T ≥ 0, we have almost surely

‖B‖2−var,[0,T ] = +∞.

Proof. See the book by Friz-Victoir page 381. �

In the previous Lecture we proved that Brownian motion paths almost surely have a
bounded p-variation for every p > 2. In this lecture, we are going to prove that they even
almost surely are p-rough paths for 2 < p < 3. To prove this, we need to construct a
geometric p rough path over the Brownian motion, that is we need to lift the Brownian
motion to the free nilpotent Lie group of step 2, G2(Rd). In this process, we will have to
define the iterated integrals

∫
dB⊗2 =

∫
B ⊗ dB. This can be done by using the theory

of stochastic integrals. Indeed, it is well known (and easy to prove !) that if

∆n[0, t] = {0 = tn0 ≤ tn1 ≤ ... ≤ tnn = t}
is a subdivision of the time interval [0, t] whose mesh goes to 0, then the Riemann sums

n−1∑
k=0

Btnk
⊗ (Btnk+1

−Btnk
)

converge in probability to a random variable denoted
∫ t

0
Bs ⊗ dBs. We can then prove

that the stochastic process
∫ t

0
Bs⊗dBs admits a continuous version which is a martingale.

With this integral of B against itself in hands, we can now proceed to construct a canonical
geometric rough path over B.

Let d ≥ 2 and denote ASd the space of d×d skew-symmetric matrices. We can realize
the group G2(Rd) in the following way

G2(Rd) = (Rd ×ASd,~)

where ~ is the group law defined by

(α1, ω1)~ (α2, ω2) = (α1 + α2, ω1 + ω2 +
1

2
α1 ∧ α2).

Here we use the following notation; if α1, α2 ∈ Rd, then α1∧α2 denotes the skew-symmetric
matrix

(
αi1α

j
2 − α

j
1α

i
2

)
i,j

. Notice that the dilation writes

(9.1) c · (α, ω) = (cα, c2ω).

Remark 9.4. If x : [0,+∞) → R2 is a continuous path with bounded variation then for
0 < t1 < t2 we denote

∆[t1,t2]x =
(
x1
t2
− x1

t1
, x2

t2
− x2

t1
, S[t1,t2]x

)
,

where S[t1,t2]x is the area swept out by the vector −−→xt1xt during the time interval [t1, t2].
Then, it is easily checked that for 0 < t1 < t2 < t3,

∆[t1,t3]x = ∆[t1,t2]x~∆[t2,t3]x,
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where ~ is precisely the law of G2(R2), i.e. for (x1, y1, z1), (x2, y2, z2) ∈ R3,

(x1, y1, z1)~ (x2, y2, z2) =

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
.

We now are in position to give the fundamental definition.

Definition 9.5. The process

Bt =

(
Bt,

1

2

(∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s

)
1≤i,j≤d

)
, t ≥ 0.

is called the lift of the Brownian motion (Bt)t≥0 in the group G2(Rd).

Interestingly, it turns out that the lift of a Brownian motion is a Markov process.
Indeed, consider the vector fields

Di(x) =
∂

∂xi
+

1

2

∑
j<i

xj
∂

∂xj,i
− 1

2

∑
j>i

xj
∂

∂xi,j
, 1 ≤ i ≤ d,

defined on Rd ×ASd. It is easy to check that:

(1) For x ∈ Rd ×ASd,

[Di, Dj](x) =
∂

∂xi,j
, 1 ≤ i < j ≤ d;

(2) For x ∈ Rd ×ASd,
[[Di, Dj], Dk](x) = 0, 1 ≤ i, j, k ≤ d;

(3) The vector fields
(Di, [Dj, Dk])1≤i≤d,1≤j<k≤d

are invariant with respect to the left action of G2(Rd) on itself and form a basis
of the Lie algebra g2(Rd) of G2(Rd).

The process (Bt)t≥0 solves the stochastic differential equation

dBt =
d∑
i=1

Di(Bt) ◦ dBi
s, 0 ≤ t ≤ T.

and as such, is a diffusion process in Rd×ASd whose generator is the subelliptic diffusion
operator given by

1

2

d∑
i=1

∂2

∂(xi)2
+

1

2

∑
i<j

(
xi

∂

∂xj
− xj ∂

∂xi

)
∂

∂xi,j
+

1

8

∑
i<j

((xi)2 + (xj)2)
∂2

∂(xi,j)2
.

Finally, also observe that we have the following scaling property, for every c > 0,

(Bct)t≥0 =law
(√

c ·Bt

)
t≥0

.

Before we turn to the fundamental result of this Lecture, we need the following result
which is known as the Garsia-Rodemich-Rumsey inequality (see the proof page 573 in the
book by Friz-Victoir):
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Lemma 9.6. Let (X, d) be a metric space and x : [0, T ] → E be a continuous path. Let
q > 1 and α ∈ (1/q, 1). There exists a constant C = C(α, q) such that:

d(x(s), x(t))q ≤ C|t− s|αq−1

∫
[s,t]2

d(x(u), x(v))q

|u− v|1+αq
dudv.

Theorem 9.7. The paths of (Bt)t≥0 are almost surely geometric p-rough paths for 2 <
p < 3. As a consequence, the Brownian motion paths almost surely are p-rough paths for
2 < p < 3. Let q > 1.

Proof. We know that if q < p, then Cq−var
0 ([0, T ],G[p](Rd)) ⊂ ΩGp([0, T ],Rd).

Therefore, we need to prove that for 2 < p < 3, the paths of (Bt)t≥0 almost surely have
bounded p-variation with respect to the Carnot-Carathéodory distance. From the scaling
property of (Bt)t≥0 and of the Carnot-Carathéodory distance, we have in distribution

d(Bs,Bt) =d
√
t− sd(0,B1).

Moreover, from the equivalence of homogeneous norms, we have

d(0,B1) ' ‖B1‖+

∥∥∥∥∫ 1

0

B ⊗ dB
∥∥∥∥1/2

.

It easily follows from that, that for every q > 1,

E
(
d(Bs,Bt)

q

(t− s)q/2

)
= E (d(0,B1)q) < +∞.

Thus, from Fubini’s theorem we obtain

E
(∫

[0,T ]2

d(Bu,Bv)
q

|u− v|q/2
dudv

)
< +∞.

The Garsia-Rodemich-Rumsey inequality implies then

d(Bs,Bt)
q ≤ C|t− s|q/2−1

∫
[0,T ]2

d(Bu,Bv)
q

|u− v|q/2
dudv.

Therefore, the paths of (Bt)t≥0 almost surely have bounded p-variation for p > 2. �



CHAPTER 5

Rough differential equations

In this chapter, we now study differential equations.

1. Davie’s estimate

In this Lecture, we prove one of the fundamental estimates of rough paths theory. This
estimate is due to Davie. It provides a basic estimate for the solution of the differential
equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s)

in terms of the p-variation of the lift of x in the free Carnot group of step [p].
We first introduce the somehow minimal regularity requirement on the vector fields

Vi’s to study rough differential equations.

Definition 1.1. A vector field V on Rn is called γ-Lipschitz if it is [γ] times continuously
differentiable and there exists a constant M ≥ 0 such that the supremum norm of its kth
derivatives k = 0, · · · , [γ] and the γ − [γ] Hölder norm of its [γ]th derivative are bounded
by M . The smallest M that satisfies the above condition is the γ-Lipschitz norm of V and
will be denoted ‖V ‖Lipγ .

The fundamental estimate by Davie is the following;

Theorem 1.2. Let γ > p ≥ 1. Assume that V1, · · · , Vd are (γ − 1)-Lipschitz vector fields
in Rn. Let x ∈ C1−var([0, T ],Rd). Let y be the solution of the equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T.

There exists a constant C depending only on p and γ such that for every 0 ≤ s < t ≤ T ,

‖y‖p−var,[s,t] ≤ C
(
‖V ‖Lipγ−1‖S[p](x)‖p−var,[s,t] + ‖V ‖p

Lipγ−1‖S[p](x)‖pp−var,[s,t]
)
,

where S[p](x) is the lift of x in G[p](Rd).

We start with two preliminary lemmas, the first one being interesting in itself.

Lemma 1.3. Let γ > 1. Assume that V1, · · · , Vd are (γ−1)-Lipschitz vector fields in Rn.
Let x ∈ C1−var([s, t],Rd). Let y be the solution of the equation

y(v) = y(s) +
d∑
i=1

∫ v

s

Vi(y(u))dxi(u), s ≤ v ≤ t.

65
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There exists a constant C depending only on γ such that,∥∥∥∥∥∥y(t)− y(s)−
[γ]∑
k=1

∑
i1,··· ,ik∈{1,··· ,d}

Vi1 · · ·VikI(y(s))

∫
∆k[s,t]

dxi1,··· ,ik

∥∥∥∥∥∥ ≤ C

(
‖V ‖Lipγ−1

∫ t

s

‖dx(r)‖
)γ

,

where I is the identity map.

Proof. For notational simplicity, we denote n = [γ]. An iterative use of the change
of variable formula leads to

y(t)− y(s)−
n∑
k=1

∑
i1,··· ,ik∈{1,··· ,d}

Vi1 · · ·VikI(y(s))

∫
∆k[s,t]

dxi1,··· ,ik

=

∫
s<r1<···<rn<t

∑
i1,··· ,in∈{1,··· ,d}

(Vi1 · · ·VinI(y(r1))− Vi1 · · ·VinI(y(s)))dxi1r1 · · · dx
in
rn .

Since V1, · · · , Vd are (γ − 1)-Lipschitz, we deduce that

‖Vi1 · · ·VinI(y(r1))− Vi1 · · ·VinI(y(s))‖ ≤ ‖V ‖nLipγ−1‖y(r1)− y(s)‖γ−n.
Since,

‖y(r1)− y(s)‖ ≤ ‖V ‖Lipγ−1

∫ r1

s

‖dxr‖,

we deduce that

‖Vi1 · · ·VinI(y(r1))− Vi1 · · ·VinI(y(s))‖ ≤ ‖V ‖γ
Lipγ−1

(∫ t

s

‖dxr‖
)γ−n

.

The result follows then easily by plugging this estimate into the integral∫
s<r1<···<rn<t

(Vi1 · · ·VinI(y(r1))− Vi1 · · ·VinI(y(s)))dxi1r1 · · · dx
in
rn .

�

The second lemma is an analogue of a result already used in previous lectures (Young-
Loeve estimate, estimates on iterated integrals).

Lemma 1.4. Let Γ : {0 ≤ s ≤ t ≤ T} → Rn. Let us assume that:

(1) There exists a control ω̃ such that

lim
r→0

sup
(s,t)∈Γ,ω̃(s,t)≤r

‖Γs,t‖
r

= 0;

(2) There exists a control ω and θ > 1, ξ > 0, K ≥ 0, α > 0 such that for 0 ≤ s ≤
t ≤ u ≤ T ,

‖Γs,u‖ ≤
(
‖Γs,t‖+ ‖Γt,u‖+ ξω(s, u)θ

)
exp(Kω(s, t)α).

Then, for all 0 ≤ s < t ≤ T ,

‖Γs,t‖ ≤
ξ

1− 21−θω(s, t)θ exp

(
2K

1− 2−α
ω(s, u)α

)
.
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Proof. For ε > 0, consider then the control

ωε(s, t) = ω(s, t) + εω̃

Define now
Ψ(r) = sup

s,u,ωε(s,u)≤r
‖Γs,u‖.

If s, u is such that ωε(s, u) ≤ r, we can find a t such that ωε(s, t) ≤ 1
2
ωε(s, u), ωε(t, u) ≤

1
2
ωε(s, u). Indeed, the continuity of ωε forces the existence of a t such that ωε(s, t) =
ωε(t, u). We obtain therefore

‖Γs,u‖ ≤
(
2Ψ(r/2) + ξrθ

)
exp(Krα),

which implies by maximization,

Ψ(r) ≤
(
2Ψ(r/2) + ξrθ

)
exp(Krα).

We have limr→0
Ψ(r)
r

= 0 and an iteration easily gives

Ψ(r) ≤ ξ

1− 21−θ r
θ exp

(
2K

1− 2−α
rα
)
.

We deduce

‖Γs,t‖ ≤
ξ

1− 21−θωε(s, t)
θ exp

(
2K

1− 2−α
ωε(s, u)α

)
,

and the result follows by letting ε→ 0. �

We now turn to the proof of Davie’s estimate. We follow the approach by Friz-Victoir
who smartly use interpolations by geodesics in Carnot groups.

Theorem 1.5. Let γ > p ≥ 1. Assume that V1, · · · , Vd are (γ − 1)-Lipschitz vector fields
in Rn. Let x ∈ C1−var([0, T ],Rd). Let y be the solution of the equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T.

There exists a constant C depending only on p and γ such that for every 0 ≤ s < t ≤ T ,

‖y‖p−var,[s,t] ≤ C
(
‖V ‖Lipγ−1‖S[p](x)‖p−var,[s,t] + ‖V ‖p

Lipγ−1‖S[p](x)‖pp−var,[s,t]
)
,

where S[p](x) is the lift of x in G[p](Rd).

Proof. For s < t, we denote by xs,t a path in C1−var([s, t],Rd) such that S[γ](x
s,t)(s) =

S[γ](x)(s), S[γ](x
s,t)(t) = S[γ](x)(t) and S[γ](x

s,t)(u), s ≤ u ≤ t, is a geodesic for the
Carnot-Carathéodory distance. We consider then ys,t to be the solution of the equation

ys,t(u) = y(s) +
d∑
i=1

∫ u

s

Vi(y
s,t(v))dxi(v), s ≤ u ≤ t.

We can readily observe that from the continuity of Lyons’ lift:

‖xs,t‖1−var,[s,t] = d(S[γ](x)(s), S[γ](x)(t)) ≤ ‖S[γ](x)‖p−var,[s,t] ≤ K‖S[p](x)‖p−var,[s,t].



68 5. ROUGH DIFFERENTIAL EQUATIONS

Let us now denote

Γs,t = (y(t)− y(s))− (ys,t(t)− ys,t(s)).
For fixed s ≤ t ≤ u, we have then:

Γs,u − Γs,t − Γt,u = (ys,u(s)− ys,u(u))− (ys,t(s)− ys,t(t))− (yt,u(t)− yt,u(u)).

To estimate this quantity, we consider the path ys,t,u(v), s ≤ v ≤ u, that solves the ordi-
nary differential equation driven by the concatenation of xs,t and xt,u. We first estimate
ys,t,u(u)−ys,u(u) by observing that ys,t,u(u) and ys,u(u) have the same Taylor expansion up
to order [γ]. Thus by using the lemma of the previous lecture and the triangle inequality,
we easily get that:

‖ys,t,u(u)− ys,u(u)‖ ≤ C1‖V ‖γLipγ−1

(∫ t

s

‖dxs,t(r)‖+

∫ u

t

‖dxt,u(r)‖
)γ

≤ C2‖V ‖γLipγ−1‖S[p](x)‖γp−var,[s,u].

We then estimate (ys,t,u(u)− ys,t,u(s)) + (ys,t(s)− ys,t(t)) + (yt,u(t)− yt,u(u)) by observing
that ys,t,u(s) = ys,t(s), ys,t,u(t) = ys,t(t). Thus,

(ys,t,u(u)− ys,t,u(s)) + (ys,t(s)− ys,t(t)) + (yt,u(t)− yt,u(u))

=(ys,t,u(u)− ys,t,u(t))− (yt,u(u)− yt,u(t))
This last term is estimated by using basic continuity estimates with respect to the initial
condition which gives

‖(ys,t,u(u)− ys,t,u(t))− (yt,u(u)− yt,u(t))‖

≤‖ys,t,u(t)− yt,u(t)‖‖V ‖Lipγ−1

∫ u

t

‖dxt,u(r)‖ exp

(
‖V ‖Lipγ−1

∫ u

t

‖dxt,u(r)‖
)

≤C3‖Γs,t‖‖V ‖Lipγ−1‖S[p](x)‖p−var,[t,u] exp
(
C3‖V ‖Lipγ−1‖S[p](x)‖p−var,[t,u]

)
We conclude

‖Γs,u − Γs,t − Γt,u‖ ≤ C2ω(s, u)γ/p + C3‖Γs,t‖ω(t, u)1/p exp
(
C3ω(t, u)1/p

)
,

where

ω(s, t) =
(
‖V ‖Lipγ−1‖S[p](x)‖p−var,[s,t]

)p
.

The basic inequality 1 + xex ≤ e2x combined with the triangle inequality gives:

‖Γs,u‖ ≤ ‖Γt,u‖+ ‖Γs,t‖ exp
(
2C3ω(s, u)1/p

)
+ C2ω(s, u)γ/p

≤
(
‖Γt,u‖+ ‖Γs,t‖+ C2ω(s, u)γ/p

)
exp

(
2C3ω(s, u)1/p

)
.

We are now in position to apply the lemma of the previous lecture (we let the reader
check that the assumptions are satisfied). We deduce then

‖Γs,t‖ ≤ C4ω(s, t)γ/p exp
(
C4ω(s, t)1/p

)
.

We now keep in mind that

Γs,t = (y(t)− y(s))− (ys,t(t)− ys,t(s)),
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and ys,t(t)− ys,t(s) can be estimated by using basic estimates on differential equations:

‖ys,t(t)− ys,t(s)‖ ≤ C5‖V ‖Lipγ−1

∫ t

s

‖dxs,t(u)‖

≤ C6ω(s, t)1/p.

From the triangle inequality, we conclude then:

‖y(s)− y(t)‖ ≤ C6ω(s, t)1/p + C4ω(s, t)γ/p exp
(
C4ω(s, t)1/p

)
,

In particular we have for s, t such that ω(s, t) ≤ 1,

‖y(s)− y(t)‖ ≤ C7ω(s, t)1/p.

This easily gives the required estimate (see Proposition 5.10 in the book by Friz-Victoir).
�

We can remark that the proof actually also provided the following estimate which is
interesting in itself:

Proposition 1.6. Let γ > p ≥ 1. Assume that V1, · · · , Vd are (γ − 1)-Lipschitz vector
fields in Rn. Let x ∈ C1−var([0, T ],Rd). Let y be the solution of the equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T.

There exists a constant C depending only on p and γ such that for every 0 ≤ s < t ≤ T ,∥∥∥∥∥∥y(t)− y(s)−
[γ]∑
k=1

∑
i1,··· ,ik∈{1,··· ,d}

Vi1 · · ·VikI(y(s))

∫
∆k[s,t]

dxi1,··· ,ik

∥∥∥∥∥∥ ≤ C‖V ‖γ
Lipγ−1‖S[p](x)‖γp−var,[s,t]

2. The Lyons’ continuity theorem

We are now ready to state the main theorem of rough paths theory: the continuity of
solutions of differential equations with respect to the driving path.

Theorem 2.1. Let γ > p ≥ 1. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in
Rn. Let x1, x2 ∈ C1−var([0, T ],Rd) such that

‖S[p](x1)‖pp−var,[0,T ] + ‖S[p](x2)‖pp−var,[0,T ] ≤ K

with K ≥ 0. Let y1, y2 be the solutions of the equations

yi(t) = y(0) +
d∑
j=1

∫ t

0

Vj(yi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2

There exists a constant C depending only on p, γ and K such that for 0 ≤ s ≤ t ≤ T ,

‖(y2(t)−y2(s))−(y1(t)−y1(s))‖ ≤ C‖V ‖LipγeC‖V ‖
p
Lipγ dp−var,[0,T ](S[p](x1), S[p](x2))ω(s, t)1/p,

where ω is the control

ω(s, t) =

(
dp−var,[s,t](S[p](x1), S[p](x2))

dp−var;[0,T ](S[p](x1), S[p](x2))

)p
+

(
‖S[p](x1)‖p−var,[s,t]
‖S[p](x1)‖p−var,[0,T ]

)p
+

(
‖S[p](x2)‖p−var,[s,t]
‖S[p](x2)‖p−var,[0,T ]

)p
.



70 5. ROUGH DIFFERENTIAL EQUATIONS

The proof will take us some time and will be preceeded by several lemmas. We can
however already give the following important corollaries:

Corollary 2.2 (Lyon’s continuity theorem). Let γ > p ≥ 1. Assume that V1, · · · , Vd are
γ-Lipschitz vector fields in Rn. Let x1, x2 ∈ C1−var([0, T ],Rd) such that

‖S[p](x1)‖pp−var,[0,T ] + ‖S[p](x2)‖pp−var,[0,T ] ≤ K

with K ≥ 0. Let y1, y2 be the solutions of the equations

yi(t) = y(0) +
d∑
j=1

∫ t

0

Vj(yi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2

There exists a constant C depending only on p, γ and K such that for 0 ≤ s ≤ t ≤ T ,

‖y2 − y1‖p−var,[0,T ] ≤ C‖V ‖LipγeC‖V ‖
p
Lipγ dp−var,[0,T ](S[p](x1), S[p](x2)).

This continuity statement immediately suggests the following basic definition for so-
lutions of differential equation driven by p-rough paths.

Theorem 2.3. Let p ≥ 1. Let x ∈ ΩGp([0, T ],Rd) be a geometric p-rough path over the
p-rough path x. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in Rn with γ > p.
If xn ∈ C1−var([0, T ],G[p](Rd)) is a sequence that converges to x in p-variation, then the
solution of the equation

yn(t) = y(0) +
d∑
j=1

∫ t

0

Vj(yn(s))dxjn(s), 0 ≤ t ≤ T,

converges in p-variation to some y ∈ Cp−var([0, T ],Rd) that does not depend on the choice
of the approximating sequence xn and that we call a solution of the rough differential
equation:

y(t) = y(0) +
d∑
j=1

∫ t

0

Vj(y(s))dxj(s), 0 ≤ t ≤ T.

The following propositions are easily obtained by a limiting argument:

Proposition 2.4 (Davie’s estimate for rough differential equations). Let γ > p ≥ 1. Let
x ∈ ΩGp([0, T ],Rd) be a geometric p-rough path over the p-rough path x. Assume that
V1, · · · , Vd are γ-Lipschitz vector fields in Rn. Let y be the solution of the rough differential
equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T.

There exists a constant C depending only on p and γ such that for every 0 ≤ s < t ≤ T ,

‖y‖p−var,[s,t] ≤ C
(
‖V ‖Lipγ−1‖x‖p−var,[s,t] + ‖V ‖p

Lipγ−1‖x‖pp−var,[s,t]
)
.
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Proposition 2.5. Let γ > p ≥ 1. Let x ∈ ΩGp([0, T ],Rd) be a geometric p-rough path
over the p-rough path x. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in Rn. Let
y be the solution of the rough differential equation

y(t) = y(0) +
d∑
i=1

∫ t

0

Vi(y(s))dxi(s), 0 ≤ t ≤ T.

There exists a constant C depending only on p and γ such that for every 0 ≤ s < t ≤ T ,∥∥∥∥∥∥y(t)− y(s)−
[γ]∑
k=1

∑
i1,··· ,ik∈{1,··· ,d}

Vi1 · · ·VikI(y(s))

∫
∆k[s,t]

dxi1,··· ,ik

∥∥∥∥∥∥ ≤ C‖V ‖γ
Lipγ−1‖x‖γp−var,[s,t]

We now turn to the proof of the continuity theorem. We start with several lemmas,
which are not difficult but a little technical. The first one is geometrically very intuitive.

Lemma 2.6. Let g1, g2 ∈ GN(Rd) such that d(g1, g2) ≤ ε with ε > 0 and d(0, g1), d(0, g2) ≤
K with K ≥ 0. Then, there exists x1, x2 ∈ C1−var([0, 1],Rd) and a constant C = C(N,K)
such that SN(x)(1) = SN(x)(0)gi, i = 1, 2 and

‖x1‖1−var,[0,1] + ‖x2‖1−var,[0,1] ≤ C

and
‖x1 − x2‖1−var,[0,1] ≤ εC.

Proof. See the book by Friz-Victoir, page 161. �

The next ingredient is the following estimate.

Lemma 2.7. Let γ ≥ 1. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in Rn. Let
x1, x̃1, x2, x̃2 ∈ C1−var([0, T ],Rd) such that

S[γ](x1)(T ) = S[γ](x̃1)(T ), S[γ](x2)(T ) = S[γ](x̃2)(T ).

Let y1, y2, ỹ1, ỹ2 be the solutions of the equations

yi(t) = yi(0) +
d∑
j=1

∫ t

0

Vj(yi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2

and

ỹi(t) = yi(0) +
d∑
j=1

∫ t

0

Vj(ỹi(s))dx̃
j
i (s), 0 ≤ t ≤ T, i = 1, 2.

If
‖x1‖1−var,[0,T ] + ‖x̃1‖1−var,[0,T ] + ‖x2‖1−var,[0,T ] + ‖x̃2‖1−var,[0,T ] ≤ K

and
‖x1 − x2‖1−var,[0,T ] + ‖x̃1 − x̃2‖1−var,[0,T ] ≤M,

then, for some constant depending only on γ,

‖(y1(T )− ỹ1(T ))− (y2(T )− ỹ2(T ))‖
≤C‖y1(0)− y2(0)‖(‖V ‖LipγK)γeC‖V ‖LipγK + CM‖V ‖Lipγ (‖V ‖LipγK)γeC‖V ‖LipγK
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Proof. Let us first observe that it is enough to prove the result when x̃1 = x̃2 = 0.
Indeed, suppose that we can prove the result in that case. Define then the path z to be
the concatenation of x̃1(T − ·) and x1(·) reparametrized so that z : [0, T ]→ Rd. It is seen
that the solution of the equation

w(t) = ỹ1(T ) +
d∑
j=1

∫ t

0

Vj(w(s))dzji (s), 0 ≤ t ≤ T

satisfies
w(T )− w(0) = y1(T )− ỹ1(T ).

We thus assume that x̃1 = x̃2 = 0. In that case, from the assumption, we have

S[γ](x1)(T ) = 1, S[γ](x2)(T ) = 1.

Taylor’s expansion gives then, with n = [γ],

y1(T )−y1(0) =

∫
s≤r1≤···≤rn≤t

∑
i1,··· ,in∈{1,··· ,d}

(Vi1 · · ·VinI(y1(r1))−Vi1 · · ·VinI(y1(s)))dxi11,r1 · · · dx
in
1,rn .

and similarly

y2(T )−y2(0) =

∫
s≤r1≤···≤rn≤t

∑
i1,··· ,in∈{1,··· ,d}

(Vi1 · · ·VinI(y2(r1))−Vi1 · · ·VinI(y2(s)))dxi12,r1 · · · dx
in
2,rn .

The result is then easily obtained by using classical estimates for Riemann-Stieltjes inte-
grals (details can be found page 230 in the book by Friz-Victoir). �

Finally, the last lemma is an easy consequence of Gronwall’s lemma

Lemma 2.8. Let γ ≥ 1. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in Rn. Let
x1, x2 ∈ C1−var([0, T ],Rd). Let y1, y2, ỹ1, ỹ2 be the solutions of the equations

yi(t) = yi(0) +
d∑
j=1

∫ t

0

Vj(yi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2

and

ỹi(t) = ỹi(0) +
d∑
j=1

∫ t

0

Vj(ỹi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2.

If
‖x1‖1−var,[0,T ] + ‖x2‖1−var,[0,T ] ≤ K

and
‖x1 − x2‖1−var,[0,T ] ≤M,

then, for some constant depending only on γ,

‖(y1(T )− y1(0))− (ỹ1(T )− ỹ1(0))− (y2(T )− y2(0)) + (ỹ2(T )− ỹ2(0))‖
≤C‖V ‖LipγKeC‖V ‖LipγK‖y1(0)− ỹ1(0)− y2(0) + ỹ2(0)‖+ C‖V ‖LipγMeC‖V ‖LipγK

+ C‖V ‖LipγKeC‖V ‖LipγK(‖y1(0)− ỹ1(0)‖+ ‖y2(0)− ỹ2(0)‖)min(2,γ)−1
(
‖ỹ1(0)− ỹ2(0)‖+ ‖V ‖LipγK

)
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Proof. See the book by Friz-Victoir page 232. �

We now turn to the proof of the Lyons’ continuity theorem.

Theorem 2.9. Let γ > p ≥ 1. Assume that V1, · · · , Vd are γ-Lipschitz vector fields in
Rn. Let x1, x2 ∈ C1−var([0, T ],Rd) such that

‖S[p](x1)‖pp−var,[0,T ] + ‖S[p](x2)‖pp−var,[0,T ] ≤ K

with K ≥ 0. Let y1, y2 be the solutions of the equations

yi(t) = y(0) +
d∑
j=1

∫ t

0

Vj(yi(s))dx
j
i (s), 0 ≤ t ≤ T, i = 1, 2

There exists a constant C depending only on p, γ and K such that for 0 ≤ s ≤ t ≤ T ,

‖(y2(t)−y2(s))−(y1(t)−y1(s))‖ ≤ C‖V ‖LipγeC‖V ‖
p
Lipγ dp−var,[0,T ](S[p](x1), S[p](x2))ω(s, t)1/p,

where ω is the control

ω(s, t) =

(
dp−var,[s,t](S[p](x1), S[p](x2))

dp−var;[0,T ](S[p](x1), S[p](x2))

)p
+

(
‖S[p](x1)‖p−var,[s,t]
‖S[p](x1)‖p−var,[0,T ]

)p
+

(
‖S[p](x2)‖p−var,[s,t]
‖S[p](x2)‖p−var,[0,T ]

)p
.

Proof. We may assume p < γ < [p] + 1, and for conciseness of notations, we set
ε = dp−var,[0,T ](S[p](x1), S[p](x2)). Let

gi = ∆ 1

ω(s,t)1/p
(S[p](xi)(s)

−1S[p](xi)(t)), i = 1, 2.

We have,

d(g1, g2) =
1

ω(s, t)1/p
d(S[p](x1)(s)−1S[p](x1)(t), S[p](x2)(s)−1S[p](x2)(t))

≤ 1

ω(s, t)1/p
dp−var,[s,t](S[p](x1), S[p](x2))

≤ ε

and, in the same way,

d(0, gi) =
1

ω(s, t)1/p
d(S[p](xi)(s), S[p](xi)(t))

=
1

ω(s, t)1/p
‖S[p](xi)‖p−var,[s,t] ≤ K.

Therefore, there exists xs,t1 , x
s,t
2 ∈ C1−var([s, t],Rd) and a constant C1 = C1([p], K)

such that

S[p](x
s,t
i )(s)−1S[p](x

s,t
i )(t) = S[p](xi)(s)

−1S[p](xi)(t), i = 1, 2

and

‖xs,t1 ‖1−var,[s,t] + ‖xs,t2 ‖1−var,[s,t] ≤ C1ω(s, t)1/p

and

‖xs,t1 − x
s,t
2 ‖1−var,[s,t] ≤ εC1ω(s, t)1/p.
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We define then xs,t,ui as the concatenation of xs,ti and xt,ui . As in the proof of Davie’s
lemma, we denote by ys,ti the solution of the equation

ys,ti (r) = yi(s) +
d∑
j=1

∫ r

s

Vj(y
s,t
i (v))dxji (v), s ≤ r ≤ t, i = 1, 2

and consider the functionals

Γis,t = (yi(t)− yi(s))− (ys,ti (t)− ys,ti (s)) = yi(t)− ys,ti (t),

and

Γ̄s,t = Γ1
s,t − Γ2

s,t

From the proof of Davie’s estimate, it is seen that

‖Γis,t‖ ≤
1

2
C2

(
‖V ‖Lipγω(s, t)1/p

)[p]+1
,

and thus

‖Γ̄s,t‖ ≤ C2

(
‖V ‖Lipγω(s, t)1/p

)[p]+1
.

On the other hand, by estimating

Γ̄s,u − Γ̄s,t − Γ̄t,u,

as in the proof of Davie’s lemma, that is by inserting ys,t,ui which is the solution of the
equation driven by the concatenation of xs,ti and xt,ui , and then by using the two lemmas
of the previous lecture, we obtain the estimate

‖Γ̄s,u‖ ≤ ‖Γ̄s,t‖eC3‖V ‖Lipγω(s,u)1/p + ‖Γ̄t,u‖+ C3(‖y1 − y2‖∞,[s,t] + ε)
(
‖V ‖Lipγω(s, u)1/p

)γ
eC3‖V ‖Lipγω(s,u)1/p

≤
(
‖Γ̄s,t‖+ ‖Γ̄t,u‖+ C3(‖y1 − y2‖∞,[s,t] + ε)

(
‖V ‖Lipγω(s, u)1/p

)γ)
eC3‖V ‖Lipγω(s,u)1/p .

It remains to bound ‖y1 − y2‖∞,[s,t]. For this let us observe that

‖(y1(t)− y2(t))− (y1(s)− y2(s))− Γ̄s,t‖ = ‖(ys,t1 (t)− ys,t2 (t))− (ys,t1 (s)− ys,t2 (s))‖.

‖(ys,t1 (t)− ys,t2 (t))− (ys,t1 (s)− ys,t2 (s))‖ can then be estimated by using classical estimates
on differential equations driven by bounded variation paths. This gives,

‖(ys,t1 (t)−ys,t2 (t))−(ys,t1 (s)−ys,t2 (s))‖ ≤ C4 (‖y1(s)− y2(s)‖+ ε) ‖V ‖Lipγω(s, t)1/peC4‖V ‖Lipγω(s,t)1/p .

By denoting z = y1 − y2, we can summarize the two above estimates as follows:

‖Γ̄s,u‖ ≤
(
‖Γ̄s,t‖+ ‖Γ̄t,u‖+ C3(‖z‖∞,[s,t] + ε)

(
‖V ‖Lipγω(s, u)1/p

)γ)
eC3‖V ‖Lipγω(s,u)1/p

and

‖z(t)− z(s)− Γ̄s,t‖ ≤ C4

(
‖z‖∞,[0,s] + ε

)
‖V ‖Lipγω(s, t)1/peC4‖V ‖Lipγω(s,t)1/p .

From a lemma already used in the proof of Davie’s estimate, the first estimate implies

‖Γ̄s,t‖ ≤ C5

(
ε+ ‖z‖∞,[0,t]

) (
‖V ‖Lipγω(s, t)1/p

)γ
eC5‖V ‖Lipγω(s,t)1/p .
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Using now the second estimate we obtain that for any interval [a, b] included in [0, T ],

sup
s,t∈[a,b]

‖z(t)− z(s)‖ ≤ C6(ε+ ‖z‖∞,[0,b])‖V ‖Lipγω(a, b)1/peC6‖V ‖Lipγω(a,b)1/p .

Using the fact that z(0) = 0 and picking a subdivision 0 = τ0 ≤ τ1 ≤ · · · ≤ τN ≤ T such
that

C6‖V ‖Lipγe
C6‖V ‖Lipγω(τi, τi+1)1/p ≤ 1/2

we see that it implies

‖z‖∞,[0,T ] ≤ C7εe
C7‖V ‖pLipγ .

Coming back to the estimate

sup
s,t∈[a,b]

‖z(t)− z(s)‖ ≤ C6(ε+ ‖z‖∞,[0,b])‖V ‖Lipγω(a, b)1/peC6‖V ‖Lipγω(a,b)1/p ,

concludes the proof. �





CHAPTER 6

Applications to stochastic differential equations

This chapter is devoted to simple but spectacular applications of rough paths theory
to stochastic differential equations.

1. Approximation of the Brownian rough path

Our goal in the next two lectures will be to prove that rough differential equations
driven a Brownian motion seen as a p-rough path, 2 < p < 3 are nothing else but
stochastic differential equations understood in the Stratonovitch sense. The proof of this
fact requires an explicit approximation of the Brownian rough path in the rough path
topology which is interesting in itself.

Let (Bt)t≥0 be a n-dimensional Brownian motion and let us denote by

Bt =

(
Bt,

1

2

(∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s

)
1≤i<j≤n

)
its lift in the free Carnot group of step 2 over Rd.

Let us work on a fixed interval [0, T ] and consider a sequence Dn of subdivisions of
[0, T ] such that Dn+1 ⊂ Dn and whose mesh goes to 0 when n → +∞. An example is
given by the sequence of dyadic subdivisions. The family Fn = σ(Bt, t ∈ Dn) is then a
filtration, that is an increasing family of σ-fields. We denote by Bn the piecewise linear
process which is obtained from B by interpolation along the subdivision Dn, that is for
tni ≤ t ≤ tni+1,

Bn
t =

tni+1 − t
tni+1 − tni

Bti +
t− tni
tni+1 − tni

Bti+1
.

The corresponding lifted process is then

Bn
t =

(
Bn
t ,

1

2

(∫ t

0

Bn,i
s dBn,j

s −Bn,j
s dBn,i

s

)
1≤i<j≤n

)
.

The main result of the lecture is the following:

Theorem 1.1. Let 2 < p < 3. When n→ +∞, almost surely, dp−var,[0,T ](B
n,B)→ 0.

We split the proof in two lemmas.

Lemma 1.2. Let t ∈ [0, T ]. When n→ +∞, almost surely, d(Bn
t ,Bt)→ 0.

77
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Proof. We first observe that, due to the Markov property of Brownian motion, we
have for tni ≤ t ≤ tni+1,

E (Bt | Fn) = E
(
Bt | Btni

, Btn+1
i

)
.

It is then an easy exercise to check that

E
(
Bt | Btni

, Btn+1
i

)
=

tni+1 − t
tni+1 − tni

Bti +
t− tni
tni+1 − tni

Bti+1
= Bn

t .

As a conclusion, we get

E (Bt | Fn) = Bn
t .

It immediately follows that Bn
t → Bt when n→ +∞. In the same way, we have

E
(∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s | Fn

)
=

∫ t

0

Bn,i
s dBn,j

s −Bn,j
s dBn,i

s .

Indeed, for 0 < t < T and ε small enough, we have by independence of Bi and Bj,

E
(
Bi
t(B

j
t+ε −B

j
t ) | Fn

)
= E

(
Bi
t | Fn

)
E
(
Bj
t+ε −B

j
t ) | Fn

)
= Bn,i

t (Bn,j
t+ε −B

n,j
t ),

and we conclude using the fact that Itô’s integral is a limit in L2 of Riemann sums. It
follows that, almost surely,

lim
n→∞

∫ t

0

Bn,i
s dBn,j

s −Bn,j
s dBn,i

s =

∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s,

and we conclude that almost surely, d(Bn
t ,Bt)→ 0. �

The second lemma is a uniform Hölder estimate for Bn.

Lemma 1.3. For every α ∈ [0, 1/2), there exists a finite random variable K that belongs
to Lp for every p ≥ 1 and such that for every 0 ≤ s ≤ t ≤ T , and every n ≥ 1,

d(Bn
s ,B

n
t ) ≤ K|t− s|α.

Proof. By using the theorem of equivalence of norms, we see that there is a constant
C such that

d(Bn
s ,B

n
t ) ≤ C

(
‖Bn

t −Bn
s ‖+

∑
i<j

∣∣∣∣∫ t

s

(Bn,i
u −Bn,i

s )dBn,j
u − (Bn,j

u −Bn,j
s )dBn,i

u

∣∣∣∣1/2
)
.

From the Garsia-Rodemich-Rumsey inequality, we know that there is a finite random
variable K1 ( that belongs to Lp for every p ≥ 1 ), such that for every 0 ≤ s ≤ t ≤ T ,∣∣∣∣∫ t

s

(Bi
u −Bi

s)dB
j
u − (Bj

u −Bj
s)dB

i
u

∣∣∣∣ ≤ K1|t− s|2α.

Since

E
(∫ t

s

(Bi
u −Bi

s)dB
j
u − (Bj

u −Bj
s)dB

i
u | Fn

)
=

∫ t

s

(Bn,i
u −Bn,i

s )dBn,j
u − (Bn,j

u −Bn,j
s )dBn,i

u ,
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we deduce that∣∣∣∣∫ t

s

(Bn,i
u −Bn,i

s )dBn,j
u − (Bn,j

u −Bn,j
s )dBn,i

u

∣∣∣∣ ≤ K2|t− s|2α,

where K2 is a finite random variable that belongs to Lp for every p ≥ 1. Similarly, of
course, we have

‖Bn
t −Bn

s ‖ ≤ K3|t− s|α,

and this completes the proof. �

We are now in position to finish the proof that, almost surely, dp−var,[0,T ](B
n,B)→ 0

if 2 < p < 3. Indeed, if ti is a subdivision of [0, T ], we have for 2 < p′ < p,

n−1∑
k=0

d
(

(Bn
ti

)−1Bn
ti+1

, (Bti)
−1Bti+1

)p
≤ dp′−var,[0,T ](B

n,B)

(
sup
s,t

d
(
(Bn

s )−1Bn
t , (Bs)

−1Bt

))p−p′
By using the second lemma, it is seen that dp′−var,[0,T ](B

n,B) is bounded when n→∞ and
by combining the first two lemmas we easily see that sups,t d ((Bn

s )−1Bn
t , (Bs)

−1Bt)→ 0.

2. Signature of the Brownian motion

Since a d-dimensional Brownian motion (Bt)t≥0 is a p-rough path for p > 2, we know
how to give a sense to the signature of the Brownian motion. In particular, the iterated
integrals at any order of the Brownian motion are well defined. It turns out that these iter-
ated integrals do not coincide with iterated Itô’s integrals but with iterated Stratonovitch
integrals. We start with some reminders about Stratonovitch integration. Let (Bt)t≥0 be
a one dimensional Brownian motion defined on a filtered probability space (Ω, (Ft)t≥0,P).

Let (Θt)0≤t≤T be a F adapted process such that E
(∫ T

0
Θ2
sds
)
< +∞. The Stratonovitch

integral of Θ against B can be defined as the limit in probability of the sums

n−1∑
k=0

Θtnk+1
+ Θtnk

2
(Btnk+1

−Btnk
),

where 0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = T is a sequence of subdivisions whose mesh goes to 0.

This limit is denoted
∫ T

0
Θs ◦ dBs and does not depend on the choice of the subdivision.

It is an easy exercise to see that the relation between Itô’s integral and Stratonovitch’s is
given by: ∫ T

0

Θs ◦ dBs =

∫ T

0

ΘsdBs +
1

2
〈Θ, B〉T ,

where 〈Θ, B〉T is the quadratic covariation between Θ and B. If (Bt)t≥0 is d dimensional
Brownian motion, we can then inductively define the iterated Stratonovitch integrals∫

0≤t1≤...≤tk≤t
◦dBi1

t1 · · ·◦dB
ik
tk

. The next theorem proves that the signature of the Brownian
rough path is given by multiple Stratonovitch integrals.
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Theorem 2.1. If (Bt)t≥0 is a d-dimensional Brownian motion, the signature of B as a
rough path is the formal series:

S(B)t = 1 +
+∞∑
k=1

∫
∆k[0,t]

◦dB⊗k

= 1 +
+∞∑
k=1

∑
I∈{1,...,d}k

(∫
0≤t1≤...≤tk≤t

◦dBi1
t1 · · · ◦ dB

ik
tk

)
Xi1 · · ·Xik .

Proof. Let us work on a fixed interval [0, T ] and consider a sequence Dn of subdivi-
sions of [0, T ] such that Dn+1 ⊂ Dn and whose mesh goes to 0 when n→ +∞. As in the
previous lecture, we denote by Bn the piecewise linear process which is obtained from B
by interpolation along the subdivision Dn, that is for tni ≤ t ≤ tni+1,

Bn
t =

tni+1 − t
tni+1 − tni

Bti +
t− tni
tni+1 − tni

Bti+1
.

We know from the previous lecture that Bn converges to B in the p-rough paths topology
2 < p < 3. In particular all the iterated integrals

∫
∆k[s,t]

dBn,⊗k converge. We claim that

actually,

lim
n→∞

∫
∆k[s,t]

dBn,⊗k =

∫
∆k[0,t]

◦dB⊗k.

Let us denote ∫
∆k[s,t]

∂B⊗k = lim
n→∞

∫
∆k[s,t]

dBn,⊗k.

We are going to prove by induction on k that
∫

∆k[s,t]
∂B⊗k =

∫
∆k[s,t]

◦dB⊗k. We have∫ T

0

Bn
s ⊗ dBn

s =
n−1∑
i=0

∫ tni+1

tni

Bn
s ⊗ dBn

s

=
n−1∑
i=0

∫ tni+1

tni

(
tni+1 − s
tni+1 − tni

Btni
+

s− tni
tni+1 − tni

Btni+1

)
ds⊗

Btni+1
−Btni

tni+1 − tni

=
1

2

n−1∑
i=0

(
Btni+1

−Btni

)
⊗
(
Btni+1

+Btni

)
By taking the limit when t→∞, we deduce therefore that

∫
∆2[0,T ]

∂B⊗2 =
∫

∆2[0,T ]
◦dB⊗2.

In the same way, we have for 0 ≤ s < t ≤ T ,
∫

∆2[s,t]
∂B⊗2 =

∫
∆2[s,t]

◦dB⊗2. Assume now

by induction, that for every 0 ≤ s ≤ t ≤ T and 1 ≤ j ≤ k,
∫

∆k[s,t]
∂B⊗k =

∫
∆k[s,t]

◦dB⊗k.
Let us denote

Γs,t =

∫
∆k+1[s,t]

∂B⊗(k+1) −
∫

∆k+1[s,t]

◦dB⊗(k+1).

From the Chen’s relations, we immediately see that

Γs,u = Γs,t + Γt,u.
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Moreover, it is easy to estimate

‖Γs,t‖ ≤ Cω(s, t)
k+1
p ,

where 2 < p < 3 and ω(s, t) = ‖B‖p−var,[s,t], B being the lift of B in the free Carnot group
of step 2. Indeed, the bound∫

∆k+1[s,t]

∂B⊗(k+1) ≤ C1ω(s, t)
k+1
p ,

comes from the continuity of Lyons’ lift and the bound∫
∆k+1[s,t]

◦dB⊗(k+1) ≤ C2ω(s, t)
k+1
p ,

easily comes from the Garsia-Rodemich-Rumsey inequality. As a conclusion, we deduce
that Γs,t = 0 which proves the induction. �

We finish this lecture by a very interesting probabilistic object, the expectation of the
Brownian signature. If

Y = y0 +
+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik .

is a random series, that is if the coefficients are real random variables defined on a prob-
ability space, we will denote

E(Y ) = E(y0) +
+∞∑
k=1

∑
I∈{1,...,d}k

E(ai1,...,ik)Xi1 ...Xik .

as soon as the coefficients of Y are integrable, where E stands for the expectation.

Theorem 2.2. For t ≥ 0,

E (S(B)t) = exp

(
t

(
1

2

d∑
i=1

X2
i

))
.

Proof. An easy computation shows that if In is the set of words with length n
obtained by all the possible concatenations of the words

{(i, i)}, i ∈ {1, ..., d},

(1) If I /∈ In then

E
(∫

∆n[0,t]

◦dBI

)
= 0;

(2) If I ∈ In then

E
(∫

∆n[0,t]

◦dBI

)
=

t
n
2

2
n
2

(
n
2

)
!
,
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Therefore,

E (S(B)t) = 1 +
+∞∑
k=1

∑
I∈Ik

t
k
2

2
k
2

(
k
2

)
!
Xi1 ...Xik

= exp

(
t

(
1

2

d∑
i=1

X2
i

))
.

�

3. Stochastic differential equations as rough differential equations

Based on the results of the previous Lecture, it should come as no surprise that differ-
ential equations driven by the Brownian rough path should correspond to Stratonovitch
differential equations. In this Lecture, we prove that it is indeed the case. Let us first re-
mind to the reader the following basic result about existence and uniqueness for solutions
of stochastic differential equations.

Let

(Bt)t≥0 = (B1
t , ..., B

d
t )t≥0

be a d-dimensional Brownian motion defined on some filtered probability space (Ω, (Ft)t≥0,P).

Theorem 3.1. Assume that V1, · · · , Vd are C2 vector fields with bounded derivatives up
to order 2. Let x0 ∈ Rn. On (Ω, (Ft)t≥0,P), there exists a unique continuous and adapted
process (Xt)t≥0 such that for t ≥ 0,

(3.2) Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi
s.

Thanks to Itô’s formula the corresponding Itô’s formulation is

Xt = x0 +
1

2

d∑
i=1

∫ t

0

∇ViVi(Xs)ds+
d∑
i=1

∫ t

0

Vi(Xs)dB
i
s,

where for 1 ≤ i ≤ d, ∇ViVi is the vector field given by

∇ViVi(x) = V 2
i I(x) =

n∑
j=1

(
n∑
k=1

vki (x)
∂vji
∂xk

(x)

)
∂

∂xj
, x ∈ Rn.

The main result of the Lecture is the following:

Theorem 3.2. Let γ > 2 and let V1, · · · , Vd be γ-Lipschitz vector fields on Rn. Let
x0 ∈ Rn. The solution of the rough differential equation

Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) dB
i
s,
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is the solution of the Stratonovitch differential equation:

Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi
s.

Proof. Let us work on a fixed interval [0, T ] and consider a sequence Dn of subdivi-
sions of [0, T ] such that Dn+1 ⊂ Dn and whose mesh goes to 0 when n→ +∞. As in the
previous lectures, we denote by Bn the piecewise linear process which is obtained from B
by interpolation along the subdivision Dn, that is for tni ≤ t ≤ tni+1,

Bn
t =

tni+1 − t
tni+1 − tni

Btni
+

t− tni
tni+1 − tni

Btni+1
.

Let us then consider the process Xn that solves the equation

Xn
t = x0 +

d∑
i=1

∫ t

0

Vi(X
n
s ) dBi,n

s ,

and the process X̃n, which is piecewise linear and such that

X̃n
tnk+1

= X̃n
tnk

+
d∑
i=i

Vi(X
n
tnk

)(Bi
tnk+1
−Bi

tnk
) +

1

2

d∑
i=1

V 2
i I(Xn

tnk
)(tnk+1 − tnk).

We can write

Xtnk+1
− X̃tnk+1

=
k∑
ν=0

(Xtnν+1
−Xtnν )− (X̃tnν+1

− X̃tnν ).

Now,

(Xtnν+1
−Xtnν )− (X̃tnν+1

− X̃tnν ) =(Xtnν+1
−Xtnν )−

d∑
i=i

Vi(X
n
tnν

)(Bi
tnν+1
−Bi

tnν
)

− 1

2

d∑
i=1

V 2
i I(Xn

tnν
)(tnν+1 − tnν ).

From Davie’s estimate, we have, with 2 < p < γ,∥∥∥∥∥(Xtnν+1
−Xtnν )−

d∑
i=i

Vi(X
n
tnν

)(Bi
tnν+1
−Bi

tnν
)−

d∑
i,j=1

(ViVjI)(Xn
tnν

)

∫ tnν+1

tnν

(Bn,i
u −B

n,i
tnν

)dBn,j
u

∥∥∥∥∥
≤C‖V ‖Lipγ−1‖S2(Bn)‖γp−var,[tnν ,tnν+1]

≤C‖V ‖Lipγ−1‖Bn‖γp−var,[tnν ,tnν+1]

≤C ′‖V ‖Lipγ−1‖B‖γp−var,[tnν ,tnν+1].

We deduce that, almost surely when n→∞,

k∑
ν=0

∥∥∥∥∥(Xtnν+1
−Xtnν )−

d∑
i=i

Vi(X
n
tnν

)(Bi
tnν+1
−Bi

tnν
)−

d∑
i,j=1

(ViVjI)(Xn
tnν

)

∫ tν+1

tnν

(Bn,i
u −B

n,i
tnν

)dBn,j
u

∥∥∥∥∥→ 0.
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On the other hand,∥∥∥∥∥
d∑

i,j=1

(ViVjI)(Xn
tnν

)

∫ tnν+1

tnν

(Bn,i
u −B

n,i
tnν

)dBn,j
u −

1

2

d∑
i=1

V 2
i I(Xn

tnν
)(tnν+1 − tnν )

∥∥∥∥∥
≤‖V ‖Lipγ

d∑
i,j=1

∣∣∣∣∫ tnν+1

tnν

(Bn,i
u −B

n,i
tnν

)dBn,j
u −

1

2
δij(t

n
ν+1 − tnν )

∣∣∣∣
≤1

2
‖V ‖Lipγ

d∑
i,j=1

∣∣∣(Bn,i
tnν+1
−Bn,i

tnν
)(Bn,j

tnν+1
−Bn,j

tnν
)− δij(tnν+1 − tnν )

∣∣∣
We deduce that in probability,

k∑
ν=0

∥∥∥∥∥
d∑

i,j=1

(ViVjI)(Xn
tnν

)

∫ tnν+1

tnν

(Bn,i
u −B

n,i
tnν

)dBn,j
u −

1

2

d∑
i=1

V 2
i I(Xn

tnν
)(tnν+1 − tnν )

∥∥∥∥∥→ 0.

We conclude that in probability,

Xtnk+1
− X̃tnk+1

→ 0.

Up to an extraction of subsequence, we can assume that almost surely

Xtnk+1
− X̃tnk+1

→ 0.

We now know that from the Lyons’ continuity theorem, almost surely Xn
t → Xt where

(Xt)t∈[0,T ] is the solution of the rough differential equation

Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) dB
i
s.

Thus almost surely, we have that X̃n
t → Xt. On the othe hand, by definition, we have

X̃n
tnk+1

= X̃n
tnk

+
d∑
i=i

Vi(X
n
tnk

)(Bi
tnk+1
−Bi

tnk
) +

1

2

d∑
i=1

V 2
i I(Xn

tnk
)(tnk+1 − tnk).

which easily implies that X̃n converges in probability to x0 +
∑d

i=i

∫ t
0
Vi(Xs) ◦ dBi

s. This
proves that

Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi
s.

�

4. The Stroock-Varadhan support theorem

To conclude this course, we are going to provide an elementary proof of the Stroock-
Varadhan support theorem. We first remind that the support of a random variable X
which defined on a metric space X is the smallest closed F such that P(X ∈ F ) = 1. In
particular x ∈ F if and only if for every open ball B(x, ε), P(X ∈ B(x, ε)) > 0.
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Let (Bt)0≤t≤T be a d-dimensional Brownian motion. We can see B as a random
variable that takes its values in Cp−var([0, T ],Rd), p > 2. The following theorem describes
the support of this random variable.

Proposition 4.1. Let p > 2. The support of B in Cp−var([0, T ],Rd) is C0,p−var
0 ([0, T ],Rd),

that is the closure for the p-variation distance of the set of smooth paths starting at 0.

Proof. The key argument is a clever application of the Cameron-Martin theorem.
Let us recall that this theorem says that if

h ∈W1,2
0 =

{
h : [0, T ]→ Rd,∃k ∈ L2([0, T ],Rd), h(t) =

∫ t

0

k(s)ds

}
,

then the distribution of B + h is equivalent to the distribution of B.
Let us denote by F the support of B. It is clear that F ⊂ C0,p−var

0 ([0, T ],Rd), because
the paths of B have bounded q variation for 2 < q < p. Let now x ∈ F . We have for
ε > 0, P(dp−var(B, x) < ε) > 0. From the Cameron Martin theorem, we deduce then

for h ∈ W1,2
0 , P(dp−var(B + h, x) < ε) > 0. This shows that x − h ∈ F . We can find a

sequence of smooth xn that converges to x in p-variation. From the previous argument
x − xn ∈ F and converges to 0. Thus 0 ∈ F and using the same argument shows then
that W1,2

0 is included in F . This proves that F = C0,p−var
0 ([0, T ],Rd). �

The following theorem due to Stroock and Varadhan describes the support of solutions
of stochastic differential equations. As in the previous proof, we denote

W1,2
0 =

{
h : [0, T ]→ Rd,∃k ∈ L2([0, T ],Rd), h(t) =

∫ t

0

k(s)ds

}
.

Theorem 4.2. Let γ > 2 and let V1, · · · , Vd be γ-Lipschitz vector fields on Rn. Let
x0 ∈ Rn. Let (Xt)t≥0 be the solution of the Stratonovitch differential equation:

Xt = x0 +
d∑
i=1

∫ t

0

Vi(Xs) ◦ dBi
s.

Let p > 2. The support of X in Cp−var([0, T ],Rd) is the closure in the p-variation topology
of the set: {

xh, h ∈W1,2
0

}
,

where xh is the solution of the ordinary differential equation

xht = x0 +
d∑
i=1

∫ t

0

Vi(x
h
s )dh

i
s

Proof. We denote by Bn the piecewise linear process which is obtained from B by
interpolation along a subdivision Dn which is such that Dn+1 ⊂ Dn and whose mesh goes
to 0. We know that Bn ∈W1,2

0 and that xB
n

almost surely converges in p-variation to X.
As a consequence B almost surely takes its values in the closure of:{

xh, h ∈W1,2
0

}
.
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This shows that the support of B is included in the closure of
{
xh, h ∈W1,2

0

}
. The

converse inclusion is a little more difficult and relies on the Lyons’ continuity theorem. It
can be proved by using similar arguments as for B (details are let to the reader) that the
support of S2(B) is the is the closure in the p-variation topology of the set:{

S2(h), h ∈W1,2
0

}
,

where S2 denotes, as usual, the lift in the Carnot group of step 2. Take h ∈ W1,2
0

and ε > 0. By the Lyons’ continuity theorem, there exists therefore η > 0 such that
dp−var(S2(h), S2(B)) < η implies ‖X − xh‖p−var < ε. Therefore

0 < P (dp−var(S2(h), S2(B)) < η) ≤ P
(
‖X − xh‖p−var < ε

)
.

In particular, we have P
(
‖X − xh‖p−var < ε

)
> 0. This proves that xh is in the support

of X. So, the proof now boils down to the statement that the support of S2(B) is the
closure in the p-variation topology of the set:{

S2(h), h ∈W1,2
0

}
.

�


